Pages

20 October 2024

On Probability (2000 - )

"Statistical mechanics is the science of predicting the observable properties of a many-body system by studying the statistics of the behaviour of its individual constituents, be they atoms, molecules, photons etc. It provides the link between macroscopic and microscopic states. […] classical thermodynamics. This is a subject dealing with the very large. It describes the world that we all see in our daily lives, knows nothing about atoms and molecules and other very small particles, but instead treats the universe as if it were made up of large-scale continua. […] quantum mechanics. This is the other end of the spectrum from thermodynamics; it deals with the very small. It recognises that the universe is made up of particles: atoms, electrons, protons and so on. One of the key features of quantum mechanics, however, is that particle behaviour is not precisely determined (if it were, it would be possible to compute, at least in principle, all past and future behaviour of particles, such as might be expected in a classical view). Instead, the behaviour is described through the language of probabilities." (A Mike Glazer & Justin S Wark, "Statistical Mechanics: A survival guide", 2001)

"In the laws of probability theory, likelihood distributions are fixed properties of a hypothesis. In the art of rationality, to explain is to anticipate. To anticipate is to explain." (Eliezer S. Yudkowsky, "A Technical Explanation of Technical Explanation", 2005)

"I have always thought that statistical design and sampling from populations should be the first courses taught, but all elementary courses I know of start with statistical methods or probability. To me, this is putting the cart before the horse!" (Walter Federer, "A Conversation with Walter T Federer", Statistical Science Vol 20, 2005)

"For some scientific data the true value cannot be given by a constant or some straightforward mathematical function but by a probability distribution or an expectation value. Such data are called probabilistic. Even so, their true value does not change with time or place, making them distinctly different from  most statistical data of everyday life." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"In fact, H [entropy] measures the amount of uncertainty that exists in the phenomenon. If there were only one event, its probability would be equal to 1, and H would be equal to 0 - that is, there is no uncertainty about what will happen in a phenomenon with a single event because we always know what is going to occur. The more events that a phenomenon possesses, the more uncertainty there is about the state of the phenomenon. In other words, the more entropy, the more information." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The four questions of data analysis are the questions of description, probability, inference, and homogeneity. [...] Descriptive statistics are built on the assumption that we can use a single value to characterize a single property for a single universe. […] Probability theory is focused on what happens to samples drawn from a known universe. If the data happen to come from different sources, then there are multiple universes with different probability models.  [...] Statistical inference assumes that you have a sample that is known to have come from one universe." (Donald J Wheeler," Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"When statisticians, trained in math and probability theory, try to assess likely outcomes, they demand a plethora of data points. Even then, they recognize that unless it’s a very simple and controlled action such as flipping a coin, unforeseen variables can exert significant influence." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Entropy is a measure of amount of uncertainty or disorder present in the system within the possible probability distribution. The entropy and amount of unpredictability are directly proportional to each other." (G Suseela & Y Asnath V Phamila, "Security Framework for Smart Visual Sensor Networks", 2019)

No comments:

Post a Comment