Pages

26 October 2025

On Algebra (1975-1999)

"The philosophical emphasis here is: to solve a geometrical problem of a global nature, one first reduces it to a homotopy theory problem; this is in turn reduced to an algebraic problem and is solved as such. This path has historically been the most fruitful one in algebraic topology." (Brayton Gray, "Homotopy Theory", Pure and Applied Mathematics Vol 64, 1975)

“In mathematics itself abstract algebra plays a dual role: that of a unifying link between disparate parts of mathematics  and that of a research subject with a highly active life of its own.” (Israel N Herstein, ”Abstract Algebra”, 1986)

"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring Mathematics All Around You", 1986)

"Instead of a state of nature evolving according to a mathematical fomula, the evolution is given geometrically. The full advantage of the geometrical point of view is beginning to appear. The more traditional way of dealing with dynamics was with the use of algebraic expressions. But a description given by formulae would be cumbersome. That form of description wouldn't have led me to insights or to perceptive analysis. My background as a topologist, trained to bend objects like squares, helped to make it possible to see the horseshoe." (Steven Smale, "What is chaos?", 1990)

"The value of diagram techniques even at this rudimentary level should be clear by now: it is easier to visualize where simplifications may be found in a complicated network by searching for a reducible linkage than by examining a complicated algebraic expression."(Geoffrey E Stedman, "Diagram Techniques in Group Theory", 1990)

"Symmetries of a geometric object are traditionally described by its automorphism group, which often is an object of the same geometric class (a topological space, an algebraic variety, etc.). Of course, such symmetries are only a particular type of morphisms, so that Klein’s Erlanger program is, in principle, subsumed by the general categorical approach." (Yuri I Manin, "Topics in Noncommutative Geometry", 1991)

"We believe that numeracy is about making meaning in mathematics and being critical about maths. This view of numeracy is very different from numeracy just being about numbers, and it is a big step from numeracy or everyday maths that meant doing some functional maths. It is about using mathematics in all its guises - space and shape, measurement, data and statistics, algebra, and of course, number - to make sense of the real world, and using maths critically and being critical of maths itself. It acknowledges that numeracy is a social activity. That is why we can say that numeracy is not less than maths but more. It is why we don’t need to call it critical numeracy being numerate is being critical." (Dave Tout & Beth Marr, "Changing practice: Adult numeracy professional development", 1997)

"Mathematics, in the common lay view, is a static discipline based on formulas taught in the school subjects of arithmetic, geometry, algebra, and calculus. But outside public view, mathematics continues to grow at a rapid rate, spreading into new fields and spawning new applications. The guide to this growth is not calculation and formulas but an open-ended search for pattern." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"Algebraic topology studies properties of a narrower class of spaces, - basically the classical objects of mathematics: spaces given by systems of algebraic and functional equations, surfaces lying in Euclidean space, and other sets which in mathematics are called manifolds. Examining the narrower class of spaces permits deeper penetration into their structure. (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

No comments:

Post a Comment