Pages

26 October 2025

On Calculus (1975-1999)

"Even the simplest calculation in the purest mathematics can have terrible consequences. Without the invention of the infinitesimal calculus most of our technology would have been impossible." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"I would therefore urge that people be introduced to [the logistic equation] early in their mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in research but also in the everyday world of politics and economics, we would all be better off if more people realized that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert M May, "Simple Mathematical Models with Very Complicated Dynamics", Nature Vol. 261 (5560), 1976)

"In comparison with Predicate Calculus encoding s of factual knowledge, semantic nets seem more natural and understandable. This is due to the one-to-one correspondence between nodes and the concepts they denote, to the clustering about a particular node of propositions about a particular thing, and to the visual immediacy of 'interrelationships' between concepts, i.e., their connections via sequences of propositional links." (Lenhart K Schubert, "Extending the Expressive Power of Semantic Networks", Artificial Intelligence 7, 1976)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery. " (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"The invention of the differential calculus was based on the recognition that an instantaneous rate is the asymptotic limit of averages in which the time interval involved is systematically shrunk. This is a concept that mathematicians recognized long before they had the skill to actually compute such an asymptotic limit." (Michael Guillen,"Bridges to Infinity: The Human Side of Mathematics", 1983)

"Calculus is the mathematics of change. The mathematics you have learned up to this point has served mainly to describe static (unchanging) situations; the calculus handles dynamic (changing) situations. Change is characteristic of the world." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Calculus systematically evades a great deal of numerical calculation." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Continuous distributions are basic to the theory of probability and statistics, and the calculus is necessary to handle them with any ease." (Richard Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Increasingly [...] the application of mathematics to the real world involves discrete mathematics... the nature of the discrete is often most clearly revealed through the continuous models of both calculus and probability. Without continuous mathematics, the study of discrete mathematics soon becomes trivial and very limited. [...] The two topics, discrete and continuous mathematics, are both ill served by being rigidly separated." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring Mathematics All Around You", 1986)

"Central to the development of the calculus were the concepts of convergence and limit, and with these concepts at hand it became at last possible to resolve the ancient paradoxes of infinity which had so much intrigued Zeno." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"The body of mathematics to which the calculus gives rise embodies a certain swashbuckling style of thinking, at once bold and dramatic, given over to large intellectual gestures and indifferent, in large measure, to any very detailed description of the world. It is a style that has shaped the physical but not the biological sciences, and its success in Newtonian mechanics, general relativity and quantum mechanics is among the miracles of mankind. But the era in thought that the calculus made possible is coming to an end. Everyone feels this is so and everyone is right." (David Berlinski, "A Tour of the Calculus", 1995)

"The story of calculus brings out two of the main things that mathematics is for: providing tools that let scientists calculate what nature is doing, and providing new questions for mathematicians to sort out to their own satisfaction. These are the external and internal aspects of mathematics, often referred to as applied and pure mathematics." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"When it comes to modeling processes that are manifestly governed by nonlinear relationships among the system components, we can appeal to the same general idea. Calculus tells us that we should expect most systems to be 'locally' flat; that is, locally linear. So a conservative modeler would try to extend the word 'local' to hold for the region of interest and would take this extension seriously until it was shown to be no longer valid." (John L Casti, "Five Golden Rules", 1995)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996

"While calculus is the mathematical key to an understanding of Nature, its roots lie really in problems of geometry." (David Acheson, "From Calculus to Chaos: An Introduction to Dynamics", 1997)

"In fact the complex numbers form a field. [...] So however strange you may feel the very notion of a complex number to be, it does turn out to provide a 'normal' type of arithmetic. In fact it gives you a tremendous bonus not available with any of the other number systems. [...] The fundamental theorem of algebra is just one of several reasons why the complex-number system is such a 'nice' one. Another important reason is that the field of complex numbers supports the development of a powerful differential calculus, leading to the rich theory of functions of a complex variable." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"Mathematics, in the common lay view, is a static discipline based on formulas taught in the school subjects of arithmetic, geometry, algebra, and calculus. But outside public view, mathematics continues to grow at a rapid rate, spreading into new fields and spawning new applications. The guide to this growth is not calculation and formulas but an open-ended search for pattern." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"The whole apparatus of the calculus takes on an entirely different form when developed for the complex numbers." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

No comments:

Post a Comment