"To a given right line to apply a parallelogram equal to a given triangle in an angle which is equal to a given right lined angle. According to the Familiars of Eudemus, the inventions respecting the application, excess, and defect of spaces, is ancient and belongs to the Pythagoric muse. But junior mathematicians receiving names from these, transferred them to the lines which are called conic, because one of these they denominate a parabola, but the other an hyperbola, and the third an ellipsis; since, indeed these ancient and divine men, in the plane description of spaces on a terminated right line, regarded the things indicated by these appellations. For when a right line being proposed, you adapt a given space to the whole right line, then that space is said to be applied, but when you make the longitude of the space greater than that of the right line, then the space is said to exceed; but when less, so that some part of the right line is external to the described space, then the space is said to be deficient." (Proclus Lycaeus, cca 5th century)
"Thus, all unknown quantities can be expressed in terms of a single quantity, whenever the problem can be constructed by means of circles and straight lines, or by conic sections, or even by some other curve of degree not greater than the third or fourth." (René Descartes, "La Géométrie", 1637)
"The perturbations which the motions of planets suffer from the influence other planets, are so small and so slow that they only become sensible after a long interval of time; within a shorter time, or even within one or several revolutions, according to circumstances, the motion would differ so little from motion exactly described, according to the laws of Kepler, in a perfect ellipse, that observations cannot show the difference. As long as this is true, it not be worth while to undertake prematurely the computation of the perturbations, but it will be sufficient to adapt to the observations what we may call an osculating conic section: but, afterwards, when the planet has been observed for a longer time, the effect of the perturbations will show itself in such a manner, that it will no longer be possible to satisfy exactly all the observations by a purely elliptic motion; then, accordingly, a complete and permanent agreement cannot be obtained, unless the perturbations are properly connected with the elliptic motion." (Carl F Gauss, "Theoria motus corporum coelestium in sectionibus conicis solem ambientium", 1809)
"It is frequently stated that Descartes was the first to apply algebra to geometry. This statement is inaccurate, for Vieta and others had done this before him. Even the Arabs some times used algebra in connection with geometry. The new step that Descartes did take was the introduction into geometry of an analytical method based on the notion of variables and constants, which enabled him to represent curves by algebraic equations. In the Greek geometry, the idea of motion was wanting, but with Descartes it became a very fruitful conception. By him a point on a plane was determined in position by its distances from two fixed right lines or axes. These distances varied with every change of position in the point. This geometric idea of co-ordinate representation, together with the algebraic idea of two variables in one equation having an indefinite number of simultaneous values, furnished a method for the study of loci, which is admirable for the generality of its solutions. Thus the entire conic sections of Apollonius is wrapped up and contained in a single equation of the second degree." (Florian Cajori, "A History of Mathematics", 1893)
"No more impressive warning can be given to those who would confine knowledge and research to what is apparently useful, than the reflection that conic sections were studied for eighteen hundred years merely as an abstract science, without regard to any utility other than to satisfy the craving for knowledge." (Alfred N Whitehead, " An Introduction to Mathematics", 1911)
"The binomial theorem, trigonometry, conic sections, and all the rest of the higher mathematics are fields of knowledge that can be acquired with dreary labour by anyone who persistently applies his mind to them." (Stephen Coleridge, "The Idolatry of Science, 1920)
"Wallis was in sympathy with Greek mathematics and astronomy, editing parts of the works of Archimedes, Eutocius, Ptolemy, and Aristarchus; but at the same time he recognized the fact that the analytic method was to replace the synthetic, as when he defined a conic as a curve of the second degree instead of as a section of a cone, and treated it by the aid of coordinates." (David E Smith, "History of Mathematics", 1923)
"We find in the history of ideas mutations which do not seem to correspond to any obvious need, and at first sight appear as mere playful whimsies - such as Apollonius' work on conic sections, or the non-Euclidean geometries, whose practical value became apparent only later." (Arthur Koestler, "The Sleepwalkers: A History of Man's Changing Vision of the Universe", 1959)
"Nature does not seem full of circles and triangles to the ungeometrical; rather, mastery of the theory of triangles and circles, and later of conic sections, has taught the theorist, the experimenter, the carpenter, and even the artist to find them everywhere, from the heavenly motions to the pose of a Venus." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)
"[...] if two conics have five points in common, then they have infinitely many points in common. This geometric theorem is somewhat subtle but translates into a property of solutions of polynomial equations that makes more natural sense to a modern mathematician." (David Ruelle, “The Mathematician's Brain”, 2007)