24 November 2025

On Combinations (Unsourced)

"On foundations we believe in the reality of mathematics, but of course, when philosophers attack us with their paradoxes, we rush to hide behind formalism and say 'mathematics is just a combination of meaningless symbols’ […]. Finally we are left in peace to go back to our mathematics and do it as we have always done, with the feeling each mathematician has that he is working with something real. The sensation is probably an illusion, but it is very convenient." (Jean Dieudonné)

"As the mind learns to understand more complicated combinations of ideas, simpler formulae soon reduce their complexity; so truths that were discovered only by great effort, that could at first only be understood by men capable of profound thought, are soon developed and proved by methods that are not beyond the reach of common intelligence. The strength and the limits of man." (Nicolas de Condorcet)

"Imagination, as well as reason, is necessary to perfection in the philosophical mind. A rapidity of combination, a power of perceiving analogies, and of comparing them by facts, is the creative source of discovery." (Sir Humphry Davy)

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two faculties, which we may call intuition and ingenuity. […] The activity of the intuition consists in making spontaneous judgements which are not the result of conscious trains of reasonings." (Alan Turing)

"Number is limited multitude or a combination of units or a flow of quantity made up of units; and the first division of number is even and odd." (Nicomachus of Gerasa)

"On foundations we believe in the reality of mathematics, but of course, when philosophers attack us with their paradoxes, we rush to hide behind formalism and say 'mathematics is just a combination of meaningless symbols’ […]. Finally we are left in peace to go back to our mathematics and do it as we have always done, with the feeling each mathematician has that he is working with something real. The sensation is probably an illusion, but it is very convenient." (Jean Dieudonné)

"Since primes are the basic building blocks of the number universe from which all the other natural numbers are composed, each in its own unique combination, the perceived lack of order among them looked like a perplexing discrepancy in the otherwise so rigorously organized structure of the mathematical world." (H Peter Aleff,"Prime Passages to Paradise")"

"When any principle, law, tenet, probability, happening, circumstance, or result can in no way be directly, indirectly, empirically, or circuitously proven, derived, implied, inferred, induced, deduced, estimated, or scientifically guessed, it will always for the purpose of convenience, expediency, political advantage, material gain, or personal comfort, or any combination of the above, or none of the above, be unilaterally and unequivocally assumed, proclaimed, and adhered to as absolute truth to be undeniably, universally, immutably, and infinitely so, until such time as it becomes advantageous to assume otherwise, maybe." (Charles E Rhodes) 

On Combinatorial Analysis (2010-)

"Combinatorics seems to be the most fruitful source of easy-to-understand but hard-to-prove theorems, and it is also seems to be the place where insights from the infinite world most clearly illuminate the finite world." (John Stillwell, "Mathematics and Its History", 2010)

"Combinatorics with all its various aspects is a broad field of Mathematics which has many applications in areas like Topology, Group Theory and even Analysis. A reason for its wide range of applications might be that Combinatorics is rather a way of thinking than a homogeneous theory, and consequently Combinatorics is quite difficult to define. Nevertheless, let us start with a definition of Combinatorics which will be suitable for our purpose: Combinatorics is the branch of Mathematics which studies collections of objects that satisfy certain criteria, and is in particular concerned with deciding how large or how small such collections might be." (Lorenz J Halbeisen,"Combinatorial Set Theory: With a Gentle Introduction to Forcing", 2011) 

"Galois and Abel independently discovered the basic idea of symmetry. They were both coming at the problem from the algebra of polynomials, but what they each realized was that underlying the solution of polynomials was a fundamental problem of symmetry. The way that they understood symmetry was in terms of permutation groups. A permutation group is the most fundamental structure of symmetry. […] permutation groups are the master groups of symmetry: every kind of symmetry is encoded in the structure of the permutation group." (Mark C Chu-Carroll, "Good Math: A Geek’s Guide to the Beauty of Numbers, Logic, and Computation", 2013)

"Combinatorics is the art and science of distilling a complex mathematical structure into simple attributes and developing from this a deeper understanding of the original structure." (Josephine Yu, "Tropical Combinatorics and Applications", 2016)

"Combinatorics is everything. All our worlds, the physical, mathematical, and even spiritual, are inherently finite and discrete, and so-called infinities, be their actual or potential, as well as the ‘continuum’, are ‘optical illusions’." (Doron Zeilberger, [interview with Enumerative Combinatorics and Applications, by Toufik Mansour", 2020)

"If you ask a mathematician what they love most about mathematics, certain answers invariably arise: beauty, abstraction, creativity, logical structure, connection (between disciplines and between people), elegance, applicability, and fun. [..] Combinatorics is the branch of mathematics best situated to embody and illustrate all of these virtues." (Stephen Melczer, "An Invitation to Analytic Combinatorics", 2021) 

23 November 2025

On Combinatorial Analysis (1850-1899)

"Partitions constitute the sphere in which analysis lives, moves, and has its being; and no power of language can exaggerate or paint too forcibly the importance of this till recently almost neglected, but vast, subtle, and universally permeating, element of algebraical thought and expression." (James J Sylvester, "On the Partition of Numbers", 1857)

"We have continually to make our choice among different courses of action open to us, and upon the discretion with which we make it, in little matters and in great, depends our prosperity and our happiness. Of this discretion a higher philosophy treats, and it is not to be supposed that Arithmetic has anything to do with it; but it is the province of Arithmetic, under given circumstances, to measure the choice which we have to exercise, or to determine precisely the number of courses open to us." (William A Whitworth, "Choice and Chance", 1870)

"I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetic act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding; the simplest act is the passing from an already-formed individual to the consecutive new one to be formed. The chain of these numbers forms in itself an exceedingly useful instrument for the human mind; it presents an inexhaustible wealth of remarkable laws obtained by the introduction of the four fundamental operations of arithmetic. Addition is the combination of any arbitrary repetitions of the above-mentioned simplest act into a single act; from it in a similar way arises multiplication. While the performance of these two operations is always possible, that of the inverse operations, subtraction and division, proves to be limited. Whatever the immediate occasion may have been, whatever comparisons or analogies with experience, or intuition, may have led thereto; it is certainly true that just this limitation in performing the indirect operations has in each case been the real motive for a new creative act; thus negative and fractional numbers have been created by the human mind; and in the system of all rational numbers there has been gained an instrument of infinitely greater perfection." (Richard Dedekind, "On Continuity and Irrational Numbers", 1872)

"That immense framework and planking of concepts to which the needy man clings his whole life long in order to preserve himself is nothing but a scaffolding and toy for the most audacious feats of the liberated intellect. And when it smashes this framework to pieces, throws it into confusion, and puts it back together in an ironic fashion, pairing the most alien things and separating the closest, it is demonstrating that it has no need of these makeshifts of indigence and that it will now be guided by intuitions rather than by concepts. There is no regular path which leads from these intuitions into the land of ghostly schemata, the land of abstractions. There exists no word for these intuitions; when man sees them he grows dumb, or else he speaks only in forbidden metaphors and in unheard - of combinations of concepts. He does this so that by shattering and mocking the old conceptual barriers he may at least correspond creatively to the impression of the powerful present intuition." (Friedrich Nietzsche, "On Truth and Lie in an Extra-Moral Sense", 1873)

"Nature is a spectacle continually exhibited to our senses, in which phenomena are mingled in combinations of endless variety and novelty." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"The imagination is one of the highest prerogatives of man. By this faculty he unites, independently of the will, former images and ideas, and thus creates brilliant and novel results […] The value of the products of our imagination depends of course on the number, accuracy, and clearness of our impressions; on our judgment and taste in selecting or rejecting the involuntary combinations, and to a certain extent on our power of voluntarily combining them." (Charles Darwin, "The Descent of Man", 1874)

"If the world may be thought of as a certain definite quantity of force and as a certain definite number of centers of force - and every other representation remains indefinite and therefore useless - it follows that, in the great dice game of existence, it must pass through calculable number of combinations. In infinite time, every possible combination would at some time or another be realized; more: it would be realized an infinite number of times. And since between every combination and its next recurrence all other possible combinations would have to take place, and each of these combination conditions of the entire sequence of combinations in the same series, a circular movement of absolutely identical series is thus demonstrated: the world as a circular movement that has already repeated itself infinitely often and plays its game in infinitum. This conception is not simply a mechanistic conception; for if it were that, it would not condition an infinite recurrence of identical cases, but a final state. Because the world has not reached this, mechanistic theory must be considered an imperfect and merely provisional hypothesis." (Friedrich Nietzsche, "The Will to Power", [notes written 1883-1888] 1901)

"The combinatory analysis in my opinion holds the ground between the theory of numbers and algebra, and is the proper passage between the realms of discontinuous and continuous quantity. It would appear advisable [...] to consider the theory of partitions an important part of combinatory analysis." (Percy A MacMahon, "Combinatory Analysis: A Review of the Present State of Knowledge", Proceedings of the London Mathematical Society Vol. s1-28 No. 1, 1896)

"All our ideas and concepts are only internal pictures, or if spoken, combinations of sounds. The task of our thinking is so to use and combine them that by their means we always most readily hit upon the correct actions and guide others likewise. In this, metaphysics follows the most down-to-earth and practical point of view, so that extremes meet. The conceptual signs that we form thus exist only within us, we cannot measure external phenomena by the standard of our ideas. We can therefore pose such formal questions as whether only matter exists and force is a property of it, or whether force exists independently of matter or conversely whether matter is a product of force but none of these questions are significant since all these concepts are only mental pictures whose purpose is to represent phenomena correctly." (Ludwig Boltzmann, 1899)

On Combinatorial Analysis (1900-1949)

"Let us subjugate a collection of objects taking into account their qualities and differences each from another, then we are lead, in our mathematical perspective, to the study of integers and their connecting operations, that is, we are lead to Number Theory. [...] If we, however, disregard the qualities of each individual object and only account for the difference between two objects insofar that they are different, then we are lead to investigations which are concerned with the position, the order, the choosing of these objects. This branch of mathematics is called Combinatorics." (Eugen Netto, "Lehrbuch der Combinatorik", 1901)

"To facilitate eyeless observation of his sense-transcending world, the mathematician invokes the aid of physical diagrams and physical symbols in endless variety and combination [...]" (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1907-1908, 1908)

"What, in fact, is mathematical discovery? It does not consist in making new combinations with mathematical entities that are already known. That can be done by anyone, and the combinations that could be so formed would be infinite in number, and the greater part of them would be absolutely devoid of interest. Discovery consists precisely in not constructing useless combinations, but in constructing those that are useful, which are an infinitely small minority. Discovery is discernment, selection." (Henri Poincaré, "Science and Method", 1908)

"In a mathematical sense, space is manifoldness, or combination of numbers. Physical space is known as the 3-dimension system. There is the 4-dimension system, there is the 10-dimension system." (Charles P Steinmetz, [New York Times interview] 1911)

"The Combinatorial Analysis, as it was understood up to the end of the 18th century, was of limited scope and restricted application. [...] Writers on the subject seemed to recognize fully that it was in need of cultivation, that it was of much service in facilitating algebraical operations of all kinds, and that it was the fundamental method of investigation in the theory of Probabilities." (Percy A MacMahon, "Combinatorial Analysis", Encyclopædia Britannica 11th Ed., 1911)

"The game of chess has always fascinated mathematicians, and there is reason to suppose that the possession of great powers of playing that game is in many features very much like the possession of great mathematical ability. There are the different pieces to learn, the pawns, the knights, the bishops, the castles, and the queen and king. The board possesses certain possible combinations of squares, as in rows, diagonals, etc. The pieces are subject to certain rules by which their motions are governed, and there are other rules governing the players. [...] One has only to increase the number of pieces, to enlarge the field of the board, and to produce new rules which are to govern either the pieces or the player, to have a pretty good idea of what mathematics consists." (James B Shaw, "What is Mathematics?", Bulletin American Mathematical Society Vol. 18, 1912)

"The combinatory analysis as considered in this work occupies the ground between algebra, properly so called, and the higher arithmetic. The methods employed are distinctly algebraical and not arithmetical. The essential connecting link between algebra and arithmetic is found in the circumstance that a particular case of algebraic multiplication involves arithmetical addition. [...] This link was forged by Euler for use in the theory of partitions of numbers. It is used here for the most general theory of combinations of which the partition of numbers is a particular case."  (Percy A MacMahon, "Combinatory Analysis" Vol. 1, 1915)

"The theory of the partition of numbers belongs partly to algebra and partly to the higher arithmetic. The former aspect is treated here. It is remarkable that in the international organization of the subject-matter of mathematics ‘Partitions’ is considered to be a part of the Theory of Numbers which is an alternative name for the Higher Arithmetic, whereas it is essentially a subdivision of Combinatory Analysis which is not considered to be within the purview of the Theory of Numbers. The fact is that up to the point of determining the real and enumerating Generating Functions the theory is essentially algebraical [..]" (Percy A MacMahon, "Combinatory Analysis" Vol. 1, 1915) 

"Combinatory Analysis is well known even to students of elementary algebra, where it figures under the title of Permutations and Combinations; while in theory of equation the subject is intimately connected with symmetric functions. The formal statement of the objects of this branch of mathematics is that it includes the formation, enumeration, and other properties of the different groups of a finite number of elements which are arranged according to prescribed laws. By its subject-matter combinatory analysis is related to some of the most ancient problems which have exercised human ingenuity." (Percy A MacMahon, "Review on 'Combinatory Analysis'", Science Progress in the Twentieth Century Vol. 10 (40), 1916)  

"One of the four grand divisions of what may be called properly static mathematics is the theory of configurations. It includes the construction out of given elements of compound forms under certain given conditions or restrictions [...] These constructions vary from the mere permutation of a linear series of elements up to the complicated trees of chemical combinations studied by Cayley, and in general to all sorts of problems in what has been happily denominated tactics by Cayley, or syntactics by Cournot. [...] The study of configurations usually begins with combinatory analysis. By this is usually meant the study of arrangements along a line of a collection of objects, either as individuals or in groups; arrangements at the nodes of a lattice, combinations of arrangements. Such problems arise not only as matters of tactic, curious problems or puzzles, but in the determination of the number of such arrangements needed in solving problems in the theory of probabilities." (James B Shaw, "Review on 'Combinatory Analysis'", Science Vol. 45 (1165), 1917)

"The term 'combinatorial analysis' hardly admits of exact definition, and is not used in the International Schedule of pure mathematics. Broadly speaking, it has come to mean the discussion of problems which involve selections from, or arrangements of, a finite number of objects; or combinations of these two operations. For the purpose of this article it will be convenient to use Sylvester's term ‘tactic’ as a synonym for 'combinatorial analysis’." (George B Mathews, "Tactic", Science Progress in the Twentieth Century Vol. 16 No. 61, 1921)

"Perhaps the philosophically most relevant feature of modern science is the emergence of abstract symbolic structures as the hard core of objectivity behind – as Eddington puts it – the colorful tale of the subjective storyteller mind. The combinatorics of aggregates and complexes deals with some of the simplest such structures imaginable. It is gratifying that combinatorial mathematics is so closely related to the philosophically important problems of individuation and probability, and that it accounts for some of the most fundamental phenomena in inorganic and organic nature. This structural viewpoint occurs in the foundations of quantum mechanics. In a widely different field John von Neumann’s and Oskar Morgenstern’s attempt to found economics on a theory of games is characteristic of the same trend. The network of nerves joining the brain with the sense organs is a subject that by its very nature invites combinatorial investigation. Modern computing machines translate our insight into the combinatorial structure of mathematics into practice by mechanical and electronic devices." (Hermann Weyl, 1947)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1947)

On Combinatorial Analysis (1800-1849)

"Algebra is a species of short-hand writing; a language, or system of characters or signs, invented for the purpose of facilitating the comparison and combination of ideas." (Robert Woodhouse, "On the necessary Truth of certain Conclusions obtained by Means of imaginary Quantities", 1801)

"It is characteristic of higher arithmetic that many of its most beautiful theorems can be discovered by induction with the greatest of ease but have proofs that lie anywhere but near at hand and are often found only after many fruitless investigations with the aid of deep analysis and lucky combinations." (Carl Friedrich Gauss, 1817)

"The Combinatorial Analysis is a branch of mathematics which teaches us to ascertain and exhibit all the possible ways in which a given number of things may be associated and mixed together; so that we may be certain that we have not missed any collection or arrangement of these things, that has not been enumerated. [...] Besides its uses in mathematical investigations, it not only enables us to form our ideas of the elegant compositions of design, but to contemplate the prodigious variety which constitutes the beauties of nature, and which arises from the combinations of objects, by their number, forms, color, and positions. It has a relation to every species of useful knowledge upon which the mind of man can be employed." (Peter Nicholson, "Essays on the Combinatorial Analysis", 1818)

"It can happen to but few philosophers, and but at distant intervals, to snatch a science, like Dalton, from the chaos of indefinite combination, and binding it in the chains of number, to exalt it to rank amongst the exact. Triumphs like these are necessarily 'few and far between’." (Charles Babbage, "Reflections on the Decline of Science in England, and on Some of Its Causes", 1830)

"Every mathematical method has its inverse, as truly, and for the same reason, as it is impossible to make a road from one town to another, without at the same time making one from the second to the first. The combinatorial analysis is analysis by means of combinations; the calculus of generating functions is combination by means of analysis." (Augustus de Morgan, "The Differential and Integral Calculus", 1836)

"One very important genus of complex ideas that we encounter everywhere are those in which the idea of collection" (Inbegriff ) appears. There are many types of the latter [...] I must first determine with more precision the concept I associate with the word collection. I use this word in the same sense as it is used in the common usage and thus understand by a collection of certain things exactly the same as what one would express by the words: a combination (Verbindung) or association (Vereinigung) of these things, a gathering" (Zusammensein) of the latter, a whole (Ganzes) in which they occur as parts (Teile). Hence the mere idea of a collection does not allow us to determine in which order and sequence the things that are put together appear or, indeed, whether there is or can be such an order. [...] A collection, it seems to me, is nothing other than something complex" (das Zusammengesetztheit hat)." (Bernard Bolzano, "Wissenschaftslehre" ["Theory of Science"], 1837)
 
"the combinatorial analysis mainly consists in the analysis of complicated developments by means of a priori consideration and collection of the different combinations of terms which can enter the coefficients" (Augustus DeMorgan, "Differential and Integral Calculus", 1842) 

"A successful attempt to express logical propositions by symbols, the laws of whose combinations should be founded upon the laws of the mental processes which they represent, would, so far, be a step towards a philosophical language." (George Boole, "The Mathematical Analysis of Logic", 1847)

On Socio-Economic Analysis

"Hence, even in the domain of natural science the aid of the experimental method becomes indispensable whenever the problem set is the analysis of transient and impermanent phenomena, and not merely the observation of persistent and relatively constant objects." (Wilhelm Wundt, "Principles of Physiological Psychology", 1874)

"It is only by historical analysis that we can discover what makes up man, since it is only in the course of history that he is formed." (Émile Durkheim, "The Dualism of Human Nature and its Social Conditions", 1914)

"The study of the conditions for change begins appropriately with an analysis of the conditions for no change, that is, for the state of equilibrium." (Kurt Lewin, "Quasi-Stationary Social Equilibria and the Problem of Permanent Change", 1947)

"Every economic and social situation or problem is now described in statistical terms, and we feel that it is such statistics which give us the real basis of fact for understanding and analysing problems and difficulties, and for suggesting remedies. In the main we use such statistics or figures without any elaborate theoretical analysis; little beyond totals, simple averages and perhaps index numbers. Figures have become the language in which we describe our economy or particular parts of it, and the language in which we argue about policy." (Ely Devons, "Essays in Economics", 1961

"The most important and frequently stressed prescription for avoiding pitfalls in the use of economic statistics, is that one should find out before using any set of published statistics, how they have been collected, analysed and tabulated. This is especially important, as you know, when the statistics arise not from a special statistical enquiry, but are a by-product of law or administration. Only in this way can one be sure of discovering what exactly it is that the figures measure, avoid comparing the non-comparable, take account of changes in definition and coverage, and as a consequence not be misled into mistaken interpretations and analysis of the events which the statistics portray." (Ely Devons, "Essays in Economics", 1961)

"The treatment of the economy as a single system, to be controlled toward a consistent goal, allowed the efficient systematization of enormous information material, its deep analysis for valid decision-making. It is interesting that many inferences remain valid even in cases when this consistent goal could not be formulated, either for the reason that it was not quite clear or for the reason that it was made up of multiple goals, each of which to be taken into account." (Leonid V Kantorovich, "Mathematics in Economics: Achievements, Difficulties, Perspectives", [Nobel lecture] 1975)

"The assumption of rationality has a favored position in economics. It is accorded all the methodological privileges of a self-evident truth, a reasonable idealization, a tautology, and a null hypothesis. Each of these interpretations either puts the hypothesis of rational action beyond question or places the burden of proof squarely on any alternative analysis of belief and choice. The advantage of the rational model is compounded because no other theory of judgment and decision can ever match it in scope, power, and simplicity." (Amos Tversky & Daniel Kahneman, "Rational Choice and the Framing of Decisions", The Journal of Business Vol. 59 (4), 1986)

"In principle, every social situation involves strategic interaction among the participants. Thus, one might argue that proper understanding of any social situation would require game-theoretic analysis. But in actual fact, classical economic theory did manage to sidestep the game-theoretic aspects of economic behavior by postulating perfect competition, i. e., by assuming that every buyer and every seller is very small as compared with the size of the relevant markets, so that nobody can significantly affect the existing market prices by his actions." (John Harsanyi, "Games with Incomplete Information" 1997)

"Uncertainty, generally conceived, is not often embraced in public discussions of economic policy. When uncertainty includes incomplete knowledge of dynamic responses, we might well be led away from arguments that"complicated problems require complicated solutions." When complexity, even formulated probabilistically, is not fully understood by policy makers, perhaps it is the simpler policies that are more prudent. This could well apply to the design of monetary policy, environmental policy and financial market oversight. Enriching our toolkit to address formally such challenges will improve the guidance that economists give when applying models to policy analysis." (Lars P Hansen, "Uncertainty Outside and Inside Economic Models", [Nobel lecture] 2013)

"When there is a reference to a decision problem, an analysis with multiple priors can deduce bounds on the expected utility consequences of alternative decisions, and more generally a mapping from alternative priors into alternative expected outcomes." (Lars P Hansen, "Uncertainty Outside and Inside Economic Models", [Nobel lecture] 2013)

On Mathematical Analysis (2000-)

"The equation e^πi+1 = 0 is true only by virtue of a large number of profound connections across many fields. It is true because of what it means! And it means what it means because of all those metaphors and blends in the conceptual system of a mathematician who understands what it means. To show why such an equation is true for conceptual reasons is to give what we have called an idea analysis of the equation." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"Analysis is also a heavily explored subject, and it is just as general as algebra: essentially, analysis is the study of functions and their properties. The more complicated the properties, the higher the analysis." (Terence Tao, "Solving Mathematical Problems: A Personal Perspective", 2006)

"Likewise, complex functions are actually better behaved than real functions, and the subject of complex analysis is known for its regularity and order, while real analysis is known for wildness and pathology A smooth complex function is predictable, in the sense that the values of the function in an arbitrarily small region determine its values everywhere. A smooth real function can be completely unpredictable for example, it can be constantly zero for a long interval, then smoothly change to the value 1." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

"The word 'complex' was introduced m a well-meaning attempt to dispel the mystery surrounding 'imaginary' or 'impossible' numbers, and" (presumably) because two dimensions are more complex than one Today, 'complex' no longer seems such a good choice of word. It is usually interpreted as 'complicated', and hence is almost as prejudicial as its predecessors. Why frighten people unnecessarily? If you are not sure what 'analysis' is, you won't want to know about 'complex analysis' - but it is the best part of analysis." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

"Consider for example the complex numbers x + iy, where you of course ask what is i = √ −1 when you first encounter this mathematical construction. But that uncomfortable feeling of what this strange imaginary unit really is fades away as you get more experienced and learn that C is a field of numbers that is extremely useful, to say the least. You no longer care what kind of object i is but are satisfied only to know that i^2 = −1, which is how you calculate with i." (Andreas Rosén,"Geometric Multivector Analysis: From Grassmann to Dirac", 2019)

On Mathematical Analysis (1975-1999)

 "But there is another kind of change, too, change that is less suited to mathematical analysis: the abrupt bursting of a bubble, the discontinuous transition from ice at its melting point to water at its freezing point, the qualitative shift in our minds when we 'get' a pun or a play on words. Catastrophe theory is a mathematical language created to describe and classify this second type of change. It challenges scientists to change the way they think about processes and events in many fields." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Physics defines itself as the science devoted to discovering, developing and refining those aspects of reality that are amenable to mathematical analysis." (John M Ziman, "Reliable Knowledge: An Exploration of the Grounds for Belief in Science", 1978)

"Having vegetated on the fringes of mathematical science for centuries, combinatorics has now burgeoned into one of the fastest growing branches of mathematics – undoubtedly so if we consider the number of publications in this field, its applications in other branches of mathematics and in other sciences, and also the interest of scientists, economists and engineers in combinatorial structures. The mathematical world was attracted by the successes of algebra and analysis and only in recent years has it become clear, due largely to problems arising from economics, statistics, electrical engineering and other applied sciences, that combinatorics, the study of finite sets and finite structures, has its own problems and principles. These are independent of those in algebra and analysis but match them in difficulty, practical and theoretical interest and beauty." (László Lovász, "Combinatorial Problems and Exercises", 1979)

"Another direction of research is fuzzy systems. This will greatly increase the use of mathematics from the inanimate to the animate. In the past, mathematics has been used for the analysis of physical systems. With fuzzy systems and computer simulation we can study many processes in the social sciences." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"To me, that the distribution of prime numbers can be so accurately represented in a harmonic analysis is absolutely amazing and incredibly beautiful. It tells of an arcane music and a secret harmony composed by the prime numbers." (Enrico Bombieri, "PrimeTerritory", The Sciences, 1992)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations" (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"I see some parallels between the shifts of fashion in mathematics and in music. In music, the popular new styles of jazz and rock became fashionable a little earlier than the new mathematical styles of chaos and complexity theory. Jazz and rock were long despised by classical musicians, but have emerged as art-forms more accessible than classical music to a wide section of the public. Jazz and rock are no longer to be despised as passing fads. Neither are chaos and complexity theory. But still, classical music and classical mathematics are not dead. Mozart lives, and so does Euler. When the wheel of fashion turns once more, quantum mechanics and hard analysis will once again be in style." (Freeman J Dyson, "Book Review of ‘Nature’s Numbers’", The American Mathematical Monthly, Vol. 103" (7), 1996)

On Mathematical Analysis (1950-1974)

"That mathematics is a handmaiden of science is a commonplace; but it is less well understood that experiments stimulate mathematical imagination, aid in the formulation of concepts and shape the direction and emphasis of mathematical studies. One of the most remarkable features of the relationship is the successful use of physical models and experiments to solve problems arising in mathematics. In some cases a physical experiment is the only means of determining whether a solution to a specific problem exists; once the existence of a solution has been demonstrated, it may then be possible to complete the mathematical analysis, even to move beyond the conclusions furnished by the model-a sort of boot-strap procedure. It is interesting to point out that what counts in this action and reaction is as much the 'physical way of thinking', the turning over in imagination of physical events, as the actual doing of the experiment." (James R Newman, "The World of Mathematics" Vol. II, 1956)

"The ultimate origin of the difficulty lies in the fact" (or philosophical principle) that we are compelled to use the words of common language when we wish to describe a phenomenon, not by logical or mathematical analysis, but by a picture appealing to the imagination. Common language has grown by everyday experience and can never surpass these limits. Classical physics has restricted itself to the use of concepts of this kind; by analysing visible motions it has developed two ways of representing them by elementary processes; moving particles and waves. There is no other way of giving a pictorial description of motions - we have to apply it even in the region of atomic processes, where classical physics breaks down." (Max Born, "Atomic Physics", 1957)

"Computers do not decrease the need for mathematical analysis, but rather greatly increase this need. They actually extend the use of analysis into the fields of computers and computation, the former area being almost unknown until recently, the latter never having been as intensively investigated as its importance warrants. Finally, it is up to the user of computational equipment to define his needs in terms of his problems, In any case, computers can never eliminate the need for problem-solving through human ingenuity and intelligence." (Richard E Bellman & Paul Brock, "On the Concepts of a Problem and Problem-Solving", American Mathematical Monthly 67, 1960)

"I discovered that a whole range of problems of the most diverse character relating to the scientific organization of production" (questions of the optimum distribution of the work of machines and mechanisms, the minimization of scrap, the best utilization of raw materials and local materials, fuel, transportation, and so on) lead to the formulation of a single group of mathematical problems" (extremal problems). These problems are not directly comparable to problems considered in mathematical analysis. It is more correct to say that they are formally similar, and even turn out to be formally very simple, but the process of solving them with which one is faced [i. e., by mathematical analysis] is practically completely unusable, since it requires the solution of tens of thousands or even millions of systems of equations for completion." (Leonid V Kantorovich, "Mathematical Methods of Organizing and Planning Production", Management Science 6(4), 1960)

"In bringing techniques of logical and mathematical analysis gives men an opportunity to bring conflicts up from the level of fights, where the intellect is beclouded by passions, to the level of games, where the intellect has a chance to operate." (Anatol Rapoport, "The Use and Misuse of Game Theory", Scientific American 207, 1962)

"The probability concept used in probability theory has exactly the same structure as have the fundamental concepts in any field in which mathematical analysis is applied to describe and represent reality." (Richard von Mises,"Mathematical Theory of Probability and Statistics", 1964)

"Mathematicians, on the other hand, often regard all of physics as a kind of divine revelation or trickery, where mathematical morals are irrelevant, so that if they enter this red-light district at all, it is only to get what they want as cheaply as possible before returning to the respectability of problems purely mathematical in the older sense: analysis, probability, differential geometry, etc." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"[...] in foundations we try to find (a theoretical framework permitting the formulation of) good reasons for the basic principles accepted in mathematical practice, while the latter is only concerned with derivations from these principles. The methods used in a deeper analysis of mathematical practice often lead to an extension of our theoretical understanding. A particularly important example is the search for new axioms, which is nothing more than a continuation of the process which led to the discovery of the currently accepted principles." (Georg Kreisel & Jean-Louis Krivine, "Elements of Mathematical Logic: Model Theory", 1967)

"Before going further into the relation between mathematical practice and foundations, it is worth noting the obvious distinction between (i) foundational analysis" (which is specifically concerned with validity) and (ii) general conceptual analysis (which, in the traditional sense of the word, is certainly a philosophical activity). As mentioned above, the working mathematician is rarely concerned with (i), but he does engage in" (ii), for instance when establishing definitions of such concepts as length or area or, for that matter, natural transformation. For this activity to be called an analysis the principal issue must be whether the definitions are correct, not merely, for instance, whether they are useful technically for deriving results not involving the concepts" (when their correctness is irrelevant). In short, it’s not (only) what you do it’s the way that you do it." (Georg Kreisel, "Observations on popular discussions of foundations", 1971)

"Analysis […] would lose immensely in beauty and balance and would be forced to add very hampering restrictions to truths which would hold generally otherwise, if […] imaginary quantities were to be neglected." (Garrett Birkhoff, 1973)

"For a long time the aim of combinatorial analysis was to count the different ways of arranging objects under given circumstances. Hence, many of the traditional problems of analysis or geometry which are concerned at a certain moment with finite structures, have a combinatorial character. Today, combinatorial analysis is also relevant to problems of existence, estimation and structuration, like all other parts of mathematics, but exclusively for finite sets." (Louis Comtet, "Advanced Combinatorics", 1974)

"Non-standard analysis frequently simplifies substantially the proofs, not only of elementary theorems, but also of deep results. This is true, e.g., also for the proof of the existence of invariant subspaces for compact operators, disregarding the improvement of the result; and it is true in an even higher degree in other cases. This state of affairs should prevent a rather common misinterpretation of non-standard analysis, namely the idea that it is some kind of extravagance or fad of mathematical logicians. Nothing could be farther from the truth. Rather, there are good reasons to believe that non-standard analysis, in some version or other, will be the analysis of the future." (Kurt Gödel, "Remark on Non-standard Analysis", 1974)

On Mathematical Analysis (1925-1949)

"It seems clear that [set theory] violates against the essence of the continuum, which, by its very nature, cannot at all be battered into a single set of elements. Not the relationship of an element to a set, but of a part to a whole ought to be taken as a basis for the analysis of a continuum." (Hermann Weyl, "Riemanns geometrische Ideen, ihre Auswirkungen und ihre Verknüpfung mit der Gruppentheorie", 1925)

"The analysis of variance is not a mathematical theorem, but rather a convenient method of arranging the arithmetic." (Sir Ronald A Fisher, Journal of the Royal Statistical Society Vol. 1, 1934)

"The mathematical machine works with unerring precision; but what we get out of it is nothing more than a rearrangement of what we put into it. In the last analysis observation - the actual contact with real events - is the only reliable way of securing the data of natural history." (William R Thompson, "Science and Common Sense", 1937)

"The mistakes and unresolved difficulties of the past in mathematics have always been the opportunities of its future; and should analysis ever appear to be without or blemish, its perfection might only be that of death." (Eric T Bell, "The Development of Mathematics", 1940)

"Mathematics as an expression of the human mind reflects the active will, the contemplative reason. and the desire for aesthetic perfection. Its basic elements are logic and intuition, analysis and construction, generality and individuality. Though different traditions may emphasize different aspects, it is only the interplay of these antithetic forces and the struggle for their synthesis that constitute the life, usefulness, and supreme value of mathematical science." (Richard Courant ‎& Herbert Robbins,"What is Mathematics?", 1941)

"Analogies are useful for analysis in unexplored fields. By means of analogies an unfamiliar system may be compared with one that is better known. The relations and actions are more easily visualized, the mathematics more readily applied, and the analytical solutions more readily obtained in the familiar system." (Harry F Olson, "Dynamical Analogies", 1943)

One would describe this as pure madness; and yet the whole development of algebra and analysis would have been impossible without that fundament - which, of course, was, in the nineteenth century, established on solid and rigorous bases. It has been written that the shortest and best way between two truths of the real domain often passes through the imaginary one." (Jacque S Hadamard, "An Essay on the Psychology of Invention in the Mathematical Field", 1945)"

"Only by the analysis and interpretation of observations as they are made, and the examination of the larger implications of the results, is one in a satisfactory position to pose new experimental and theoretical questions of the greatest significance." (John A Wheeler, "Elementary Particle Physics", American Scientist, 1947)

"The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics; and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking." (John von Neumann,"Works of the Mind", 1947)

"Mathematicians are led to new problems not only by way of contact with the world of physical experience but also by introspective study of the methods which they have elected to use. The trend of classical analysis has been to break up the object of study into finer and finer elements without end." (Marston Morse, "Equilibria in Nature: Stable and Unstable", Proceedings of the American Philosophical Society Vol. 93" (3), 1949)

Related Posts Plugin for WordPress, Blogger...

On Combinations (Unsourced)

"On foundations we believe in the reality of mathematics, but of course, when philosophers attack us with their paradoxes, we rush to h...