"First, what are the 'graphs' studied in graph theory? They are not graphs of functions as studied in calculus and analytic geometry. They are" (usually finite) structures consisting of vertices and edges. As in geometry, we can think of vertices as points" (but they are denoted by thick dots in diagrams) and of edges as arcs connecting pairs of distinct vertices. The positions of the vertices and the shapes of the edges are irrelevant: the graph is completely specified by saying which vertices are connected by edges. A common convention is that at most one edge connects a given pair of vertices, so a graph is essentially just a pair of sets: a set of objects." (John Stillwell, "Mathematics and Its History", 2010)
"Today, most mathematicians have embraced the axiom of choice because of the order and simplicity it brings to mathematics in general. For example, the theorems that every vector space has a basis and every field has an algebraic closure hold only by virtue of the axiom of choice. Likewise, for the theorem that every sequentially continuous function is continuous. However, there are special places where the axiom of choice actually brings disorder. One is the theory of measure." (John Stillwell, "Roads to Infinity: The mathematics of truth and proof", 2010)
"A crucial difference between topology and geometry lies in the set of allowable transformations. In topology, the set of allowable transformations is much larger and conceptually much richer than is the set of Euclidean transformations. All Euclidean transformations are topological transformations, but most topological transformations are not Euclidean. Similarly, the sets of transformations that define other geometries are also topological transformations, but many topological transformations have no counterpart in these geometries. It is in this sense that topology is a generalization of geometry." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"A topological property is, therefore, any property that is preserved under the set of all homeomorphisms. […] Homeomorphisms generally fail to preserve distances between points, and they may even fail to preserve shapes." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011
"Although topology grew out of geometry - at least in the sense that it was initially concerned with sets of geometric points - it quickly evolved to include the study of sets for which no geometric representation is possible. This does not mean that topological results do not apply to geometric objects. They do. Instead, it means that topological results apply to a very wide class of mathematical objects, only some of which have a geometric interpretation." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"At first glance, sets are about as primitive a concept as can be imagined. The concept of a set, which is, after all, a collection of objects, might not appear to be a rich enough idea to support modern mathematics, but just the opposite proved to be true. The more that mathematicians studied sets, the more astonished they were at what they discovered, and astonished is the right word. The results that these mathematicians obtained were often controversial because they violated many common sense notions about equality and dimension." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"In dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values" (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behaviour. Generally, at a bifurcation, the local stability properties of equilibria, periodic orbits or other invariant sets changes." (Gregory Faye, "An introduction to bifurcation theory", 2011)
"In each branch of mathematics it is essential to recognize when two structures are equivalent. For example two sets are equivalent, as far as set theory is concerned, if there exists a bijective function which maps one set onto the other. Two groups are equivalent, known as isomorphic, if there exists a a homomorphism of one to the other which is one-to-one and onto. Two topological spaces are equivalent, known as homeomorphic, if there exists a homeomorphism of one onto the other." (Sydney A Morris, "Topology without Tears", 2011)
"The details of the shapes of the neighborhoods are not important. If the two sets of neighborhoods satisfy the equivalence criterion, then any set that is open, closed, and so on with respect to one set of neighborhoods will be open, closed, and so on with respect to the other set of neighborhoods." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"[…] topologies are determined by the way the neighborhoods are defined. Neighborhoods, not individual points, are what matter. They determine the topological structure of the parent set. In fact, in topology, the word point conveys very little information at all." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"We use the term fuzzy logic to refer to all aspects of representing and manipulating knowledge that employ intermediary truth-values. This general, commonsense meaning of the term fuzzy logic encompasses, in particular, fuzzy sets, fuzzy relations, and formal deductive systems that admit intermediary truth-values, as well as the various methods based on them." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)
"What distinguishes topological transformations from geometric ones is that topological transformations are more 'primitive'. They retain only the most basic properties of the sets of points on which they act." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"A function acts like a set of rules for turning some numbers into others, a machine with parts that we can manipulate to accomplish anything we can imagine." (David Perkins, "Calculus and Its Origins", 2012)
"A function is also sometimes referred to as a map or a mapping. This terminology is common in mathematics, but less so in physics or other scientific fields. The idea of a mapping is useful if one wants to think of a function as acting on an entire set of input values." (David P Feldman,"Chaos and Fractals: An Elementary Introduction", 2012)
"Typical symbols used in mathematics are operationals, groupings, relations, constants, variables, functions, matrices, vectors, and symbols used in set theory, logic, number theory, probability, and statistics. Individual symbols may not have much effect on a mathematician’s creative thinking, but in groups they acquire powerful connections through similarity, association, identity, resemblance and repeated imagery. ¿ey may even create thoughts that are below awareness." (Joseph Mazur. "Enlightening symbols: a short history of mathematical notation and its hidden powers", 2014)
"For group theoretic reasons the most impressive paradoxical decompositions occur in dimension at least three, but there are also interesting decompositions in lower dimensions. For example, one can partition a disc into finitely many subsets and rigidly rearrange these subsets to form a square of the same area as the original disc. Even without the Axiom of Choice it is possible to construct some counterintuitive subsets of the plane, so Choice cannot be held responsible for all that is counterintuitive in geometry. Some more radical alternatives to the Axiom of Choice obstruct such constructions more effectively." (Barnaby Sheppard, "The Logic of Infinity", 2014)
"Given any collection of infinite sets the Axiom of Choice tells us that there exists a set which has one element in common with each of the sets in the collection. Choice, which seems to be an intuitively sound principle, is equivalent to the much less plausible statement that every set has a well-ordering. Although many tried to prove Choice, they only seemed to be able to find equivalent statements which were just as difficult to prove." (Barnaby Sheppard, "The Logic of Infinity", 2014)
"[...] it is one thing to posit a set of axioms for a putative discipline. It is quite another to show that those proposed axioms are not mutually contradictory. A set of axioms that is not mutually contradictory is also called a consistent axiom system. Of course, a set of mutually contradictory axioms might be such that one can easily see a contradiction or maybe a simple argument could reveal a contradiction. More worrisome is the possibility that an argument that is very clever or very long or both is needed to reveal a contradiction. Given a mathematical theory that seems to be free of internal contradictions, the way mathematicians show it is, in fact, free of contradictions is by constructing what is called a model for the theory. This involves using another mathematical theory, say set theory, to produce a concrete mathematical object that satisfies the axioms of the theory being investigated. Once a model has been constructed, then we know that if set theory itself is free of internal contradictions, then the same is true of the theory being investigated. In practice, one does not often go all the way back to set theory to construct a model - mathematicians work with higher level constructions - but, in principle, they could start with set theory and work up from there." (Steven G Krantz & Harold R Parks, "A Mathematical Odyssey: Journey from the Real to the Complex", 2014)
"Since the membership relation is well-founded, well-founded relations can be defined on any class, however, the existence of a well-ordering of every set cannot be proved without appealing to the Axiom of Choice. Indeed, the assumption that every set has a well-ordering is equivalent to the Axiom of Choice." (Barnaby Sheppard, "The Logic of Infinity", 2014)
"Objections to the Axiom of Choice, either the strong or the weak version, are typically either philosophical, based on the intuitive temporal implausibility of making an infinite number of choices, or on the non-constructive nature of the axiom, or are based on a peculiar identification of continuum-based models of physics with the physical objects being modelled; properties of the model which are implied by the Axiom of Choice are deemed to be counterintuitive because the physical objects they model don’t have these properties. Motivated by these objections, or just for curiosity, several alternatives to Choice have been explored." (Barnaby Sheppard, "The Logic of Infinity", 2014)
"Some intuitive sets seem to have a less tangible existence than others, but it is difficult to draw a clear boundary between these different levels of concreteness. Naively we might expect to be able to include everything, to associate a set with any given property (precisely the set of all things having that property), but by a clever choice of property this leads to a contradiction. One of the tasks of set theory is to exclude these paradox-generating predicates and to describe the stable construction of new sets from old. Mathematics has a long history of creating concrete models of notions which at their birth were difficult abstract ideas." (Barnaby Sheppard, "The Logic of Infinity", 2014)
"The most obvious variations of the Axiom of Choice are those that restrict the cardinality of the sets in question. Other variations impose relational restrictions between the sets. When the early set theorists tried to prove the Axiom of Choice they invariably ended up showing it is equivalent to some other statement that they were unable to prove. This collection of equivalent statements has grown to an enormous size. One of its striking features is that some of the statements seem intuitively obvious while others are either wildly counterintuitive or evade any kind of evaluation." (Barnaby Sheppard, "The Logic of Infinity", 2014)
"A very basic observation concerning a fundamental property of the world we live in is the existence of objects that can be distinguished from each other. For the definition of a set, it is indeed of crucial importance that things have individuality, because in order to decide whether objects belong to a particular set they must be distinguishable from objects that are not in the set. Without having made the basic experience of individuality of objects, it would be difficult to imagine or appreciate the concept of a set." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"Moreover, there is still another important observation that seems to be essential for the idea to group objects into a set: This is the human ability to recognize similarities in different objects. Usually, a collection, or group, consists of objects that somehow belong together, objects that share a common property. While a mathematical set could also be a completely arbitrary collection of unrelated objects, this is usually not what we want to count. We count coins or hours or people, but we usually do not mix these categories." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"The invariance principle states that the result of counting a set does not depend on the order imposed on its elements during the counting process. Indeed, a mathematical set is just a collection without any implied ordering. A set is the collection of its elements - nothing more." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"[…] the role that symmetry plays is not confined to material objects. Symmetries can also refer to theories and, in particular, to quantum theory. For if the laws of physics are to be invariant under changes of reference frames, the set of all such transformations will form a group. Which transformations and which groups depends on the systems under consideration." (William H Klink & Sujeev Wickramasekara, "Relativity, Symmetry and the Structure of Quantum Theory I: Galilean quantum theory", 2015)
"When we extend the system of natural numbers and counting to embrace infinite cardinals, the larger system need not have all of the properties of the smaller one. However, familiarity with the smaller system leads us to expect certain properties, and we can become confused when the pieces don’t seem to fit. Insecurity arose when the square of a complex number violated the real number principle that all squares are positive. This was resolved when we realised that the complex numbers cannot be ordered in the same way as their subset of reals." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)
"Independence of two events is not a property of the events themselves, rather it is a property that comes from the probabilities of the events and their intersection. This is in contrast to mutually exclusive events, which have the property that they contain no elements in common. Two mutually exclusive events each with non-zero probability cannot be independent. Their intersection is the empty set, so it must have probability zero, which cannot equal the product of the probabilities of the two events!" (William M Bolstad & James M Curran, "Introduction to Bayesian Statistics" 3rd Ed., 2017)
"Making a map is the physical production including conceptualization and design. Mapping is the mental interpretation of the world and although it must precede the map, it does not necessarily result in a map artifact. Mapping defined in mathematics is the correspondence between each element of a given set with each element of another. Similarly in linguistics emphasis is on the correspondence between associated elements of different types. For designers all drawings are maps - they represent relationships between objects, places and ideas." (Winifred E Newman, "Data Visualization for Design Thinking: Applied Mapping", 2017)
"Mathematics is the domain of all formal languages, and allows the expression of arbitrary statements" (most of which are uncomputable). Computation may be understood in terms of computational systems, for instance via defining states" (which are sets of discernible differences, i.e. bits), and transition functions that let us derive new states." (Joscha Bach, "The Cortical Conductor Theory: Towards Addressing Consciousness in AI Models", 2017)
"The elements of this cloud of uncertainty (the set of all possible errors) can be described in terms of probability. The center of the cloud is the number zero, and elements of the cloud that are close to zero are more probable than elements that are far away from that center. We can be more precise in this definition by defining the cloud of uncertainty in terms of a mathematical function, called the probability distribution." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)
"The Axiom of Choice says that it is possible to make an infinite number of arbitrary choices. […] Mathematicians don’t exactly care whether or not the Axiom of Choice holds over all, but they do care whether you have to use it in any given situation or not." (Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)
"Quaternions are not actual extensions of imaginary numbers, and they are not taking complex numbers into a multi-dimensional space on their own. Quaternion units are instances of some number-like object type, identified collectively, but they are not numbers" (be it real or imaginary). In other words, they form a closed, internally consistent set of object instances; they can of course be plotted visually on a multi-dimensional space but this only is a visualization within their own definition." (Huseyin Ozel, "Redefining Imaginary and Complex Numbers, Defining Imaginary and Complex Objects", 2018)