23 November 2025

On Logical Analysis (1950-)

"The act of discovery escapes logical analysis; there are no logical rules in terms of which a 'discovery machine' could be constructed that would take over the creative function of the genius. But it is not the logician’s task to account for scientific discoveries; all he can do is to analyze the relation between given facts and a theory presented to him with the claim that it explains these facts. In other words, logic is concerned with the context of justification." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"The philosopher of science is not much interested in the thought processes which lead to scientific discoveries; he looks for a logical analysis of the completed theory, including the relationships establishing its validity. That is, he is not interested in the context of discovery, but in the context of justification" (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"The ultimate origin of the difficulty lies in the fact" (or philosophical principle) that we are compelled to use the words of common language when we wish to describe a phenomenon, not by logical or mathematical analysis, but by a picture appealing to the imagination. Common language has grown by everyday experience and can never surpass these limits. Classical physics has restricted itself to the use of concepts of this kind; by analysing visible motions it has developed two ways of representing them by elementary processes; moving particles and waves. There is no other way of giving a pictorial description of motions - we have to apply it even in the region of atomic processes, where classical physics breaks down." (Max Born, "Atomic Physics", 1957)

"In bringing techniques of logical and mathematical analysis gives men an opportunity to bring conflicts up from the level of fights, where the intellect is beclouded by passions, to the level of games, where the intellect has a chance to operate." (Anatol Rapoport, "The Use and Misuse of Game Theory", Scientific American 207, 1962)

"Foundations provide an analysis of practice. To deserve this name, foundations must be | expected to introduce notions which do not occur in practice. Thus in foundations of set theory, types of sets are treated explicitly while in practice they are generally absent; and in foundations of constructive mathematics, the analysis of the logical operations involves (intuitive) proofs while in practice there is no explicit mention of the latter." (Georg Kreisel & Jean-Louis Krivine, "Elements of Mathematical Logic: Model Theory", 1967)

"A person who thinks by images becomes less and less capable of thinking by reasoning, and vice versa. The intellectual process based on images is contradictory to the intellectual process of reasoning that is related to the word. There are two different ways of dealing with an object. They involve not only different approaches, but even more important, opposing mental attitudes. This is not a matter of complementary processes, such as analysis and synthesis or logic and dialectic. These processes lack any qualitative common denominator." (Jacques Ellul, "The Humiliation of the Word", 1981)

"The most persuasive positive argument for mental images as objects is [that] whenever one thinks one is seeing something there must be something one is seeing. It might be an object directly, or it might be a mental picture. [This] point is so plausible that it is deniable only at the peril of becoming arbitrary. One should concede that the question whether mental images are entities of some sort is not resolvable by logical or linguistic analysis, and believe what makes sense of experience." (Eva T H Brann,"The World of Imagination" , 1991))

"Dialectical thinking opposes formalism because of its separation of form from content. We make errors by abstracting the elements of a problem into a formal model and ignoring facts and contexts crucial to correct analysis. Overemphasis on logical approaches leads to distortion, error, and rigidity." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)



On Logical Analysis (1800-1949)

"With the synthesis of every new concept in the aggregation of coordinate characteristics the extensive or complex distinctness is increased; with the further analysis of concepts in the series of subordinate characteristics the intensive or deep distinctness is increased. The latter kind of distinctness, as it necessarily serves the thoroughness and conclusiveness of cognition, is therefore mainly the business of philosophy and is carried farthest especially in metaphysical investigations." (Immanuel Kant, "Logic", 1800)

"A successful attempt to express logical propositions by symbols, the laws of whose combinations should be founded upon the laws of the mental processes which they represent, would, so far, be a step towards a philosophical language." (George Boole, "The Mathematical Analysis of Logic", 1847)

"Analysis and synthesis, though commonly treated as two different methods, are, if properly understood, only the two necessary parts of the same method. Each is the relative and correlative of the other. Analysis, without a subsequent synthesis, is incomplete; it is a mean cut of from its end. Synthesis, without a previous analysis, is baseless; for synthesis receives from analysis the elements which it recomposes." (Sir William Hamilton, "Lectures on Metaphysics and Logic: 6th Lecture on Metaphysics", 1858)

"In science nothing capable of proof ought to be accepted without proof. Though this demand seems so reasonable yet I cannot regard it as having been met even in […] that part of logic which deals with the theory of numbers. In speaking of arithmetic" (algebra, analysis) as a part of logic I mean to imply that I consider the number concept entirely independent of the notions of intuition of space and time, that I consider it an immediate result from the laws of thought." (Richard Dedekind, "Was sind und was sollen die Zahlen?", 1888)

 "The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our age; and when this fact has been established, the remainder of the principles of mathematics consists in the analysis of Symbolic Logic itself." (Bertrand Russell, "Principles of Mathematics", 1903)

"A definition is the logical analysis of a predicate in general terms. It has two branches, the one asserting that the definitum is applicable to whatever there may be to which the definition is applicable; the other" (which ordinarily has several clauses), that the definition is applicable to whatever there may be to which the definitum is applicable. A definition does not assert that anything exists." (Charles S Peirce, "New Elements" ["Kaina stoiceia"], 1904)

"In fact, the opposition of instinct and reason is mainly illusory. Instinct, intuition, or insight is what first leads to the beliefs which subsequent reason confirms or confutes; but the confirmation, where it is possible, consists, in the last analysis, of agreement with other beliefs no less instinctive. Reason is a harmonising, controlling force rather than a creative one. Even in the most purely logical realms, it is insight that first arrives at what is new." (Bertrand Russell,"Our Knowledge of the External World", 1914)


On Logical Analysis (-1799)

"Now analysis is of two kinds, the one directed to searching for the truth and called theoretical, the other directed to finding what we are told to find and called problematical." (1) In the theoretical kind we assume what is sought as if it were existent and true, after which we pass through its successive consequences, as if they too were true and established by virtue of our hypothesis, to something admitted: then" (a), if that something admitted is true, that which is sought will also be true and the proof will correspond in the reverse order to the analysis, but" (b), if we come upon something admittedly false, that which is sought will also be false." (2) In the problematical kind we assume that which is propounded as if it were known, after which we pass through its successive consequences, taking them as true, up to something admitted: if then" (a) what is admitted is possible and obtainable, that is, what mathematicians call given, what was originally proposed will also be possible, and the proof will again correspond in reverse order to the analysis, but if" (b) we come upon something admittedly impossible, the problem will also be impossible." (Pappus of Alexandria, cca. 4th century BC)

"Analysis is a method where one assumes that which is sought, and from this, through a series of implications, arrives at something which is agreed upon on the basis of synthesis; because in analysis, one assumes that which is sought to be known, proved, or constructed, and examines what this is a consequence of and from what this latter follows, so that by backtracking we end up with something that is already known or is part of the starting points of the theory; we call such a method analysis; it is, in a sense, a solution in reversed direction. In synthesis we work in the opposite direction: we assume the last result of the analysis to be true. Then we put the causes from analysis in their natural order, as consequences, and by putting these together we obtain the proof or the construction of that which is sought. We call this synthesis." (Pappus of Alexandria, cca. 4th century BC)

"Analysis is the obtaining of the thing sought by assuming it and so reasoning up to an admitted truth; synthesis is the obtaining of the thing sought by reasoning up to the inference and proof of it." (Eudoxus, cca. 4th century BC)

"But in synthesis, reversing the process, we start from the point which we reached last of all in the analysis, from the thing already known or admittedly true. We derive from it what preceded it in the analysis, and go on making derivations until, retracing our steps, we finally succeed in arriving at what is required. This procedure we call synthesis, or constructive solution, or progressive reasoning." (Pappus of Alexandria, cca. 4th century BC)

"In analysis, we start from what is required, we take it for granted, and we draw consequences from it, and consequences from the consequences, till we reach a point that we can use as starting point in synthesis. For in analysis we assume what is required to be done as already done" (what is sought as already found, what we have to prove as true). We inquire from what antecedent the desired result could be derived; then we inquire again what could be the antecedent of that antecedent, and so on, until passing from antecedent to antecedent, we come eventually upon something already known or admittedly true. This procedure we call analysis, or solution backwards, or regressive reasoning." (Pappus of Alexandria, cca. 4th century BC))

"The so-called 'Treasury of Analysis' [also Heuristic] is, to put it shortly, a special body of doctrine for the use of those who, after having studied the ordinary Elements, are desirous of acquiring the ability to solve mathematical problems, and it is useful for this alone. It is the work of three men, Euclid, the author of the Elements, Apollonius of Perga, and Aristaeus the elder. It teaches the procedures of analysis and synthesis." (Pappus of Alexandria, cca. 4th century BC)

"The analysis of concepts is for the understanding nothing more than what the magnifying glass is for sight." (Moses Mendelssohn, 1763)

On Analysis Situ (1950-)

"Topology, or analysis situs, is a modern branch of geometry which […] does not bring in the notions of size or measure, but only that of continuity. It concerns itself, then, only with qualitative properties of figures. More precisely, one can define the aim of topology as follows. A property of a set is said to be topological if it can be expressed by means of the concept of continuity. A topological property of a set is called a topological invariant if it is preserved under all homeomorphisms. Topology is the study of topological properties and, especially, topological invariants of figures." (Maurice Frechet & Ky Fan, "Initiation to Combinatorial Topology", 1967)

"An initial study of tensor analysis can. almost ignore the topological aspects since the topological assumptions are either very natural" (continuity, the Hausdorff property) or highly technical" (separability, paracompactness). However, a deeper analysis of many of the existence problems encountered in tensor analysis requires assumption of some of the more difficult-to-use topological properties, such as compactness and paracompactness. " (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"From its beginning critical point theory has been concerned with mutual relations between topology and geometric analysis, including differential geometry. Although it may have seemed to many to have been directed in its initial years toward applications of topology to analysis, one now sees that the road from topology to geometric analysis is a two-way street. Today the methods of critical point theory enter into the foundations of almost all studies of analysis or geometry 'in the large'." (Marston Morse & Stewart S Cairns, "Critical Point Theory in Global Analysis and Differential Topology: An Introduction", 1969)

"Mathematicians are finding that the study of global analysis or differential topology requires a knowledge not only of the separate techniques of analysis, differential geometry, topology, and algebra, but also a deeper understanding of how these fields can join forces." (Marston Morse & Stewart S Cairns, "Critical Point Theory in Global Analysis and Differential Topology: An Introduction", 1969)

"Though combinatorics has been successfully applied to many branches of mathematics these can not be compared neither in importance nor in depth to the applications of analysis in number theory or algebra to topology, but I hope that time and the ingenuity of the younger generation will change this." (Paul Erdős, "On the application of combinatorial analysis", Proceedings of the International Congress of Mathematicians Nice, 1970)

"Topology, which used to be called geometry of situation or analysis situs ('topos' means position, situation in Greek), considers that all pots with two handles are of the same form because, if both are infinitely flexible and compressible, they can be molded into any other continuously, without tearing any new opening or closing up any old one. It also teaches that all single island coastlines are of the same form, because they are topologically identical to a circle." (Benoît B Mandelbrot, "The Fractal Geometry of Nature" 3rd Ed., 1983)

"Modem geometry and topology take a special place in mathematics because many of the objects they deal with are treated using visual methods. […] Each mathematician has his own system of concepts of the intrinsic geometry of his" (specific) mathematical world and visual images which he associated with some or other abstract concepts of mathematics" (including algebra, number theory, analysis, etc.). It is noteworthy that sometimes one and the same abstraction brings about the same visual picture in different mathematicians, but these pictures born by imagination are in most cases very difficult to represent graphically, so to say, to draw." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

On Analysis Situ (-1949)

"After all the progress I have made in these matters, I am still not happy with Algebra, because it provides neither the shortest ways nor the most beautiful constructions of Geometry. This is why when it comes to that, I think that we need another analysis which is properly geometric or linear, which expresses to us directly situm, in the same way as algebra expresses magnitudinem. And I think that I have the tools for that, and that we might represent figures and even engines and motion in character, in the same way as algebra represents numbers in magnitude." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)

"The use of figures is, above all, then, for the purpose of making known certain relations between the objects that we study, and these relations are those which occupy the branch of geometry that we have called Analysis Situs [that is, topology], and which describes the relative situation of points and lines on surfaces, without consideration of their magnitude." (Henri Poincaré, "Analysis Situs", Journal de l'Ecole Polytechnique 1, 1895))

"The Combinatorial Analysis, as it was understood up to the end of the 18th century, was of limited scope and restricted application. [...] Writers on the subject seemed to recognize fully that it was in need of cultivation, that it was of much service in facilitating algebraical operations of all kinds, and that it was the fundamental method of investigation in the theory of Probabilities." (Percy A MacMahon, "Combinatorial Analysis", Encyclopædia Britannica 11th Ed., 1911)

"That branch of mathematics which deals with the continuity properties of two-" (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true" (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"And here is what makes this analysis situs interesting to us; it is that geometric intuition really intervenes there. When, in a theorem of metric geometry, one appeals to this intuition, it is because it is impossible to study the metric properties of a figure as abstractions of its qualitative properties, that is, of those which are the proper business of analysis situs. It has often been said that geometry is the art of reasoning correctly from badly drawn figures. This is not a capricious statement; it is a truth that merits reflection. But what is a badly drawn figure? It is what might be executed by the unskilled draftsman spoken of earlier; he alters the properties more or less grossly; his straight lines have disquieting zigzags; his circles show awkward bumps. But this does not matter; this will by no means bother the geometer; this will not prevent him from reasoning." (Henri Poincaré, "Dernières pensées", 1913)

"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are." (Henri Poincaré, "Dernières pensées", 1913)

"That branch of mathematics which deals with the continuity properties of two-" (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true" (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"It is possible that analysis in the large may eventually reduce to topology, but not until topology has been greatly broadened. It is equally conceivable that the apparently less general situations which arise with such frequency in problems in analysis in the large may form the canonical cases about which the topology of the future can be built." (Marston Morse, "What is Analysis in the Large?", The American Mathematical Monthly Vol. 49" (6), 1942)

22 November 2025

On Functions: On Machine Learning

"Learning a complicated function that matches the training data closely but fails to recognize the underlying process that generates the data. As a result of overfitting, the model performs poor on new input. Overfitting occurs when the training patterns are sparse in input space and/or the trained networks are too complex." (Frank Padberg, "Counting the Hidden Defects in Software Documents", 2010)

"Neural networks can model very complex patterns and decision boundaries in the data and, as such, are very powerful. In fact, they are so powerful that they can even model the noise in the training data, which is something that definitely should be avoided. One way to avoid this overfitting is by using a validation set in a similar way as with decision trees.[...] Another scheme to prevent a neural network from overfitting is weight regularization, whereby the idea is to keep the weights small in absolute sense because otherwise they may be fitting the noise in the data. This is then implemented by adding a weight size term (e.g., Euclidean norm) to the objective function of the neural network." (Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications", 2014)

"Supervised learning, or function approximation, is simply fitting data to a function of any variety.  […] Unsupervised learning involves figuring out what makes the data special. […] Reinforcement learning involves figuring out how to play a multistage game with rewards and payoffs. Think of it as the algorithms that optimize the life of something." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"Bias is error from incorrect assumptions built into the model, such as restricting an interpolating function to be linear instead of a higher-order curve. [...] Errors of bias produce underfit models. They do not fit the training data as tightly as possible, were they allowed the freedom to do so. In popular discourse, I associate the word 'bias' with prejudice, and the correspondence is fairly apt: an apriori assumption that one group is inferior to another will result in less accurate predictions than an unbiased one. Models that perform lousy on both training and testing data are underfit." (Steven S Skiena, "The Data Science Design Manual", 2017)

"In Boosting, the selection of samples is done by giving more and more weight to hard-to-classify observations. Gradient boosting classification produces a prediction model in the form of an ensemble of weak predictive models, usually decision trees. It generalizes the model by optimizing for the arbitrary differentiable loss function. At each stage, regression trees fit on the negative gradient of binomial or multinomial deviance loss function." (Danish Haroon,Python Machine Learning Case Studies", 2017)

"In machine learning, a model is defined as a function, and we describe the learning function from the training data as inductive learning. Generalization refers to how well the concepts are learned by the model by applying them to data not seen before. The goal of a good machine-learning model is to reduce generalization errors and thus make good predictions on data that the model has never seen." (Umesh R Hodeghatta & Umesha Nayak,Business Analytics Using R: A Practical Approach", 2017)

"Just as they did thirty years ago, machine learning programs" (including those with deep neural networks) operate almost entirely in an associational mode. They are driven by a stream of observations to which they attempt to fit a function, in much the same way that a statistician tries to fit a line to a collection of points. Deep neural networks have added many more layers to the complexity of the fitted function, but raw data still drives the fitting process. They continue to improve in accuracy as more data are fitted, but they do not benefit from the 'super-evolutionary speedup'. " (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"The beauty of quantum machine learning is that we do not need to depend on an algorithm like gradient descent or convex objective function. The objective function can be nonconvex or something else." (Amit Ray,Quantum Computing Algorithms for Artificial Intelligence", 2018


On Functions (1950-1959)

"When the mathematician speaks of the existence of a 'functional relation' between two variable quantities, he means that they are connected by a simple 'formula that is to say, if we are told the value of one of the variable quantities we can find the value of the second quantity by substituting in the formula which tells us how they are related. [...] The thing to be clear about before we proceed further is that a functional relationship in mathematics means an exact and predictable relationship, with no ifs or buts about lt. It is useful in practice so long as the ifs and buts are only tiny voices which even the most ardent protagonist of proportional representation can ignore with a clear conscience." (Michael J Moroney, "Facts from Figures", 1951)

"Just as mathematics aims to study such entities as numbers, functions, spaces, etc., the subject matter of metamathematics is mathematics itself." (Frank C DeSua, "Mathematics: A Non-Technical Exposition", American Scientist, 3 Jul 1954)

"A common and very powerful constraint is that of continuity. It is a constraint because whereas the function that changes arbitrarily can undergo any change, the continuous function can change, at each step, only to a neighbouring value." (W Ross Ashby, "An Introduction to Cybernetics", 1956) 

"The mere fact that the same mathematical expression -Σ pi log(pi) [i is index], occurs both in statistical mechanics and in information theory does not in itself establish any connection between these fields. This can be done only by finding new viewpoints from which thermodynamic entropy and information-theory entropy appear as the same concept." (Edwin T Jaynes, "Information Theory and Statistical Mechanics" I, 1956)

"There are good statistics and bad statistics; it may be doubted if there are many perfect data which are of any practical value. It is the statistician's function to discriminate between good and bad data; to decide when an informed estimate is justified and when it is not; to extract the maximum reliable information from limited and possibly biased data." (Alfred R Ilersic, "Statistics", 1959)

On Functions (1825-1849)

"In analysis, one is largely occupied by functions which can be expressed as powers. As soon as other powers enter - this, however, is not often the case - then it does not work any more and a number of connected, incorrect theorems arise from false conclusions." (Niels H Abel, [Letter to Christoffer Hansteen] 1826)

"Complete knowledge of the nature of an analytic function must also include insight into its behavior for imaginary values of the arguments. Often the latter is indispensable even for a proper appreciation of the behavior of the function for real arguments. It is therefore essential that the original determination of the function concept be broadened to a domain of magnitudes which includes both the real and the imaginary quantities, on an equal footing, under the single designation complex numbers." (Carl F Gauss, cca. 1831)

"Every mathematical method has its inverse, as truly, and for the same reason, as it is impossible to make a road from one town to another, without at the same time making one from the second to the first. The combinatorial analysis is analysis by means of combinations; the calculus of generating functions is combination by means of analysis." (Augustus de Morgan, "The Differential and Integral Calculus", 1836)

"A function of x is a number which is given for each x and which changes gradually together with x. The value of the function could be given either by an analytic expression or by a condition which offers a means for testing all numbers and selecting one from them, or lastly the dependence may exist but remain unknown." (Nikolai I Lobachevsky, 1838)

"The immense part which those laws [laws of number and extension] take in giving a deductive character to the other departments of physical science, is well known; and is not surprising, when we consider that all causes operate according to mathematical laws. The effect is always dependent upon, or in mathematical language, is a function of, the quantity of the agent; and generally of its position also. We cannot, therefore, reason respecting causation, without introducing considerations of quantity and extension at every step; and if the nature of the phenomena admits of our obtaining numerical data of sufficient accuracy, the laws of quantity become the grand instruments for calculating forward to an effect, or backward to a cause." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"[…] a function of the variable x will be continuous between two limits a and b of this variable if between two limits the function has always a value which is unique and finite, in such a way that an infinitely small increment of this variable always produces an infinnitely small increment of the function itself." (Augustin-Louis Cauchy, "Mémoire sur les fonctions continues" ["Memoir on continuous functions"], 1844)

"The concept of rotation led to geometrical exponential magnitudes, to the analysis of angles and of trigonometric functions, etc. I was delighted how thorough the analysis thus formed and extended, not only the often very complex and unsymmetric formulae which are fundamental in tidal theory, but also the technique of development parallels the concept." (Hermann GGrassmann, "Ausdehnungslehre", 1844)

On Functions (1925-1949)

"Every scientific problem can be stated most clearly if it is thought of as a search for the nature of the relation between two defi nitely stated variables. Very often a scientific problem is felt and stated in other terms, but it cannot be so clearly stated in any way as when it is thought of as a function by which one variable is shown to be dependent upon or related to some other variable." (Louis L Thurstone, "The Fundamentals of Statistics", 1925)

"Meantime, there is no doubt a certain crudeness in the use of a complex wave function. If it were unavoidable in principle, and not merely a facilitation of the calculation, this would mean that there are in principle two wave functions, which must be used together in order to obtain information on the state of the system. [...] Our inability to give more accurate information about this is intimately connected with the fact that, in the pair of equations [considered], we have before us only the substitute - extraordinarily convenient for the calculation, to be sure - for a real wave equation of probably the fourth order, which, however, I have not succeeded in forming for the non-conservative case."(Edwin Schrödinger, "Quantisation as a Problem of Proper Values" , Annalen der Physik Vol. 81" (4), 1926)

"In order to regain in a rigorously defined function those properties that are analogous to those ascribed to an empirical curve with respect to slope and curvature (first and higher difference quotients), we need not only to require that the function is continuous and has a finite number of maxima and minima in a finite interval, but also assume explicitly that it has the first and a series of higher derivatives (as many as one will want to use)." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"No one has ever been able to prove, for example, that every even number greater than two can be expressed as the sum of two primes. Yet this is as well established by observation as any of the laws of physics. It is known that this and various other theorems are true if a certain hypothesis about the Zeta function, enunciated by Riemann nearly a century ago, is correct. No one has been able to prove this hypothesis. It has only been shown that all the consequences deducible if it is true are so far verified by experience. But any day a computer with little knowledge of pure mathematics may disprove it. Here then is a possible triumph for the mathematical amateur." (John B S Haldane, "Possible Worlds and Other Essays", 1928)

"The course of the values of a continuous function is determined at all points of an interval, if only it is determined for all rational points of this interval." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The most general definition of a function that we have reached in modern mathematics starts by fixing the values that the independent variable x can take on. We define that x must successively pass through the points of a certain 'point set'. The language used is therefore geometric […]." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"What had already been done for music by the end of the eighteenth century has at last been begun for the pictorial arts. Mathematics and physics furnished the means in the form of rules to be followed and to be broken. In the beginning it is wholesome to be concerned with the functions and to disregard the finished form. Studies in algebra, in geometry, in mechanics characterize teaching directed towards the essential and the functional, in contrast to apparent. One learns to look behind the façade, to grasp the root of things. One learns to recognize the undercurrents, the antecedents of the visible. One learns to dig down, to uncover, to find the cause, to analyze." (Paul Klee, "Bauhaus prospectus", 1929)

"The general theory of economic equilibrium was strengthened and made effective as an organon of thought by two powerful subsidiary conceptions - the Margin and Substitution. The notion of the Margin was extended beyond Utility to describe the equilibrium point in given conditions of any economic factor which can be regarded as capable of small variations about a given value, or in its functional relation to a given value." (John M Keynes, "Essays In Biography", 1933)

"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid V Kantorovich, "On one class of functional equations", 1936)

"There is thus a possibility that the ancient dream of philosophers to connect all Nature with the properties of whole numbers will some day be realized. To do so physics will have to develop a long way to establish the details of how the correspondence is to be made. One hint for this development seems pretty obvious, namely, the study of whole numbers in modern mathematics is inextricably bound up with the theory of functions of a complex variable, which theory we have already seen has a good chance of forming the basis of the physics of the future. The working out of this idea would lead to a connection between atomic theory and cosmology." (Paul A M Dirac, [Lecture delivered on presentation of the James Scott prize] 1939)

"It should be observed first that the whole concept of a category is essentially an auxiliary one; our basic concepts are essentially those of a functor and of a natural transformation […]. The idea of a category is required only by the precept that every function should have a definite class as domain and a definite class as range, for the categories are provided as the domains and ranges of functors. Thus one could drop the category concept altogether […]" (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"As usual we may make the errors of I) rejecting the null hypothesis when it is true, II) accepting the null hypothesis when it is false. But there is a third kind of error which is of interest because the present test of significance is tied up closely with the idea of making a correct decision about which distribution function has slipped furthest to the right. We may make the error of III) correctly rejecting the null hypothesis for the wrong reason." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"The first attempts to consider the behavior of so-called ‘random neural nets’ in a systematic way have led to a series of problems concerned with relations between the 'structure' and the ‘function’ of such nets. The ‘structure’ of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of "this" neuron synapsing on ‘that’ one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport. "Cycle distributions in random nets." The Bulletin of Mathematical Biophysics 10 (3), 1948)

On Functions (Unsourced)

"Combinatorics is an honest subject. No adèles, no sigma-algebras. You count balls in a box, and you either have the right number or you haven’t. You get the feeling that the result you have discovered is forever, because it’s concrete. Other branches of mathematics are not so clear-cut. Functional analysis of infinite-dimensional spaces is never fully convincing: you don’t get a feeling of having done an honest day’s work. Don’t get the wrong idea - combinatorics is not just putting balls into boxes. Counting finite sets can be a highbrow undertaking, with sophisticated techniques." (Gian-Carlo Rota, [interview]) 

"How could it be that the Riemann zeta function so convincingly mimics a quantum system without being one?" (Michael V Berry) [33] 

"I believe that numbers and functions of Analysis are not the arbitrary result of our minds; I think that they exist outside of us, with the same character of necessity as the things of objective reality, and we meet them or discover them, and study them, as do the physicists, the chemists and the zoologists." (Charles Hermite)

"I turn away with fright and horror from the lamentable evil of functions which do not have derivatives." (Charles Hermite, [letter to Thomas J Stieltjes])

"[...] in one of those unexpected connections that make theoretical physics so delightful, the quantum chorology of spectra turns out to be deeply connected to the arithmetic of prime numbers, through the celebrated zeros of the  Riemann zeta function: the zeros mimic quantum energy levels of a classically chaotic system. The connection is not only deep but also tantalizing, since its basis is still obscure - though it has been fruitful for both mathematics and physics." (Michael V Berry)

"It’s a whole beautiful subject and the Riemann zeta function is just the fi rst one of these, but it’s just the tip of the iceberg. They are just the most amazing objects, these L-functions - the fact that they exist, and have these incredible properties are tied up with all these arithmetical things - and it’s just a beautiful subject. Discovering these things is like discovering a gemstone or something. You’re amazed that this thing exists, has these properties and can do this." (J Brian Conrey)

"Reality is a wave function traveling both backward and forward in time." (John L Casti)

"The chief weakness of the machine is that it will not learn by its mistakes. The only way to improve its play is by improving the program. Some thought has been given to designing a program that would develop its own improvements in strategy with increasing experience in play. Although it appears to be theoretically possible, the methods thought of so far do not seem to be very practical. One possibility is to devise a program that would change the terms and coefficients involved in the evaluation function on the basis of the results of games the machine had already played. Small variations might be introduced in these terms, and the values would be selected to give the greatest percentage of wins." (Claude E Shannon)

"The theory of functions with one independent variable is very closely connected with the theory of algebraic curves. The geometry of such a curve becomes therefore of fundamental importance." (Heegaard)

"We shall consider the simplest maximum and minimum problem that points to a natural transition from functions of a finite number of variables to magnitudes that depend on an infinite number of variables." (Vito Volterra)

"When graphing a function, the width of the line should be inversely proportional to the precision of the data." (Marvin J Albinak)

Related Posts Plugin for WordPress, Blogger...

On Logical Analysis (1950-)

"The act of discovery escapes logical analysis; there are no logical rules in terms of which a 'discovery machine' could be con...