"As arithmetic and algebra are sciences of great clearness, certainty, and extent, which are immediately conversant about signs, upon the skillful use whereof they entirely depend, so a little attention to them may possibly help us to judge of the progress of the mind in other sciences, which, though differing in nature, design, and object, may yet agree in the general methods of proof and inquiry." (George Berkeley, "Alciphorn: or, the Minute Philosopher", 1732)
"And what are these fluxions? The velocities of evanescent increments. And what are these same evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities? [...] The method of Fluxions is the general key by help whereof the modern mathematicians unlock the secrets of Geometry, and consequently of Nature." (George Berkeley, "The Analyst", 1734)
“[…] the sciences that are expressed by numbers or by other small signs, are easily learned; and without doubt this facility rather than its demonstrability is what has made the fortune of algebra.” (Julien Offray de La Mettrie, “Man a Machine”, 1747)
“Algebra is a general Method of Computation by certain Signs and Symbols which have been contrived for this Purpose, and found convenient. It is called an Universal Arithmetic, and proceeds by Operations and Rules similar to those in Common Arithmetic, founded upon the same Principles.” (Colin Maclaurin, “A Treatise on Algebra”, 1748)
“Often I have considered the fact that most of the difficulties which block the progress of students trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition they entertain strange ideas about the concept of the infinite, which they must try to use." (Leonhard Euler, "Introduction to Analysis of the Infinite", 1748)
“When two quantities equal in respect of magnitude, but of those opposite kinds, are joined together, and conceived to take place in the same subject, they destroy each other’s effect, and their amount is nothing.” (Colin MacLaurin, “A Treatise of Algebra”, 1748)
"[negative numbers] darken the very whole doctrines of the equations and to make dark of the things which are in their nature excessively obvious and simple. It would have been desirable in consequence that the negative roots were never allowed in algebra or that they were discarded." (Francis Meseres, 1759)
"First, everything will be said to be a magnitude, which is capable of increase or diminution, or to which something may be added or subtracted […] mathematics is nothing more than the science of magnitudes, which finds methods by which they can be measured." (Leonhard Euler, "Algebra" , 1770)
"We think only through the medium of words. Languages are true analytical methods. Algebra, which is adapted to its purpose in every species of expression, in the most simple, most exact, and best manner possible, is at the same time a language and an analytical method. The art of reasoning is nothing more than a language well arranged." (Abbé de Condillac, "System of Logic", cca. 1781)
“[…] direction is not a subject for algebra except in so far as it can be changed by algebraic operations. But since these cannot change direction (at least, as commonly explained) except to its opposite, that is, from positive to negative, or vice versa, these are the only directions it should be possible to designate. […] It is not an unreasonable demand that operations used in geometry be taken in a wider meaning than that given to them in arithmetic. “ (Casper Wessel, „On the Analytical Representation of Direction“, 1787)
"The algebraic analysis soon makes us forget the main object [of our researches] by focusing our attention on abstract combinations and it is only at the end that we return to the original objective. But in abandoning oneself to the operations of analysis, one is led to the generality of this method and the inestimable advantage of transforming the reasoning by mechanical procedures to results often inaccessible by geometry. Such is the fecundity of the analysis that it suffices to translate into this universal language particular truths In order to see emerge from their very expression a multitude of new and unexpected truths. No other language has the capacity for the elegance that arises from a long sequence of expressions linked one to the other and all stemming from one fundamental idea. Therefore the geometers [mathematicians] of this century convinced of its superiority have applied themselves primarily to extending Its and pushing back its bounds." (Pierre-Simon Laplace, "Exposition du system du monde" ["Explanation on the solar system"], 1796)
„Every negative quantity standing by itself is a mere creature of the mind and [...] those which are met with in calculations are only mere algebraical forms, incapable of representing any thing real and effective.“ (Lazare Carnot, “Geometrie de Position”, 1803)
"Metaphor [...] may be said to be the algebra of language." (Charles C Colton, "Lacon", 1820)
"We may always depend upon it that algebra, which cannot be translated into good English and sound common sense, is bad algebra." (William K Clifford, "The Common Sense of the Exact Sciences", 1823)
"Moreover, the whole method has the essential disadvantage that it occupies the mind with the distinction of a great number of cases that can be recognized only by inner intuition, and thus neutralizes an important part of that which algebra is supposed to accomplish, which is relieving the power of inner intuition. Finally, in such a treatment algebra loses a great part of the generality that it can obtain by the mutual connection of different problems, which becomes evident so easily when one uses isolated negative quantities. [...] Since imaginary quantities have to occur, science would certainly not win that much by avoiding negative quantities than it would lose in terms of clarity and generality." (Johann P W Stein, "Die Elemente der Algebra: Erster Cursus", 1828)
"In symbolical algebra, the rules determine the meaning of the operations […] we might call them arbitrary assumptions, inasmuch as they are arbitrarily imposed upon a science of symbols and their combinations, which might be adapted to any other assumed system of consistent rules." (George Peacock, "Treatise of Algebra", 1830)
”The first thing to be attended to in reading any algebraical treatise, is the gaining a perfect understanding of the different processes there exhibited, and of their connection with one another. This cannot be attained by a mere reading of the book, however great the attention which may be given. It is impossible, in a mathematical work, to fill up every process in the manner in which it must be filled up in the mind of the student before he can be said to have completely mastered it. Many results must be given of which the details are suppressed, such are the additions, multiplications, extractions of the square root, etc., with which the investigations abound. These must not be taken on trust by the student, but must be worked by his own pen, which must never be out of his hand, while engaged in any algebraical process.” (Augustus de Morgan, “On the Study and Difficulties of Mathematics”, 1830)
"Algebra, as an art, can be of no use to any one in the business of life; certainly not as taught in the schools. I appeal to every man who has been through the school routine whether this be not the case. Taught as an art it is of little use in the higher mathematics, as those are made to feel who attempt to study the differential calculus without knowing more of the principles than is contained in books of rules." (Augustus de Morgan, "Elements of Algebra", 1837)
“The science of algebra, independently of any of its uses, has all the advantages which belong to mathematics in general as an object of study, and which it is not necessary to enumerate. Viewed either as a science of quantity, or as a language of symbols, it may be made of the greatest service to those who are sufficiently acquainted with arithmetic, and who have sufficient power of comprehension to enter fairly upon its difficulties.” (Augustus de Morgan, “Elements of Algebra”, 1837)
"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)
“Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space.” (James J Sylvester, “A Probationary Lecture on Geometry”, 1844)
"Those who can, in common algebra, find a square root of -1, will be at no loss to find a fourth dimension in space in which ABC may become ABCD: or, if they cannot find it, they have but to imagine it, and call it an impossible dimension, subject to all the laws of the three we find possible. And just as √-1 in common algebra, gives all its significant combinations true, so would it be with any number of dimensions of space which the speculator might choose to call into impossible existence." (Augustus De Morgan, "Trigonometry and Double Algebra", 1849)
“[Algebra] has for its object the resolution of equations; taking this expression in its full logical meaning, which signifies the transformation of implicit functions into equivalent explicit ones. In the same way arithmetic may be defined as destined to the determination of the values of functions. […] We will briefly say that Algebra is the Calculus of functions, and Arithmetic is the Calculus of Values.” (Auguste Comte, “Philosophy of Mathematics”, 1851)
“The difficulties which so many have felt in the doctrine of Negative and Imaginary Quantities in Algebra forced themselves long ago on my attention […] And while agreeing with those who had contended that negatives and imaginaries were not properly quantities at all, I still felt dissatisfied with any view which should not give to them, from the outset, a clear interpretation and meaning [...] It early appeared to me that these ends might be attained by our consenting to regard Algebra as being no mere Art, nor Language, nor primarily a Science of Quantity; but rather as the Science of Order in Progression.” (William R Hamilton, “Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method… “, 1853)
"In treating of the practical application of scientific principles, an algebraical formula should only be employed when its shortness and simplicity are such as to render it a clearer expression of a proposition or rule than common language would be, and when there is no difficulty in keeping the thing represented by each symbol constantly before the mind."(William J M Rankine, "On the Harmony of Theory and Practice in Mechanics", 1856)
"[...] the symbols of algebra, when employed in abstruse and complex theoretical investigations, constitute a sort of thought-saving machine, by whose aid a person skilled in its use can solve problems respecting quantities, and dispense with the mental labour of thinking of the quantities denoted by the symbols, except at the beginning and the end of the operation." (William J M Rankine, "On the Harmony of Theory and Practice in Mechanics", 1856)
"The leading characteristic of algebra is that of operation on relations. This also is the leading characteristic of Thought. Algebra cannot exist without values, nor Thought without Feelings. The operations are so many blank forms till the values are assigned. Words are vacant sounds, ideas are blank forms, unless they symbolize images and sensations which are their values. Nevertheless it is rigorously true, and of the greatest importance, that analysts carry on very extensive operations with blank forms, never pausing to supply the symbols with values until the calculation is completed; and ordinary men, no less than philosophers, carry on long trains of thought without pausing to translate their ideas (words) into images." (George H Lewes "Problems of Life and Mind", 1873)
"The rules of Arithmetic operate in Algebra; the logical operations supposed to be peculiar to Ideation operate in Sensation, There is but one Calculus, but one Logic; though for convenience we divide the one into Arithmetic the calculus of values, and Algebra the calculus of relations; the other into the Logic of Feeling and the Logic of Signs." (George H Lewes "Problems of Life and Mind", 1873)
"Thought is symbolical of Sensation as Algebra is of Arithmetic, and because it is symbolical, is very unlike what it symbolises. For one thing, sensations are always positive; in this resembling arithmetical quantities. A negative sensation is no more possible than a negative number. But ideas, like algebraic quantities, may be either positive or negative. However paradoxical the square of a negative quantity, the square root of an unknown quantity, nay, even in imaginary quantity, the student of Algebra finds these paradoxes to be valid operations. And the student of Philosophy finds analogous paradoxes in operations impossible in the sphere of Sense. Thus although it is impossible to feel non-existence, it is possible to think it; although it is impossible to frame an image of Infinity, we can, and do, form the idea, and reason on it with precision." (George H Lewes "Problems of Life and Mind", 1873)
"With Algebra we enter a new sphere, that of symbolical quantities; here letters are symbols of any values we please; all we deal with in them is the relations of equality which the letters symbolise. Although the values are changeable, jet, once assigned, they must remain fixed throughout the operation. Illogical reasoning, in philosophic as in ordinary minds, is not due to any irregularity in the normal operation, but to a departure from the values assigned." (George H Lewes "Problems of Life and Mind", 1873)
"The most striking characteristic of the written language of algebra and of the higher forms of the calculus is the sharpness of definition, by which we are enabled to reason upon the symbols by the mere laws of verbal logic, discharging our minds entirely of the meaning of the symbols, until we have reached a stage of the process where we desire to interpret our results. The ability to attend to the symbols, and to perform the verbal, visible changes in the position of them permitted by the logical rules of the science, without allowing the mind to be perplexed with the meaning of the symbols until the result is reached which you wish to interpret, is a fundamental part of what is called analytical power. Many students find themselves perplexed by a perpetual attempt to interpret not only the result, but each step of the process. They thus lose much of the benefit of the labor-saving machinery of the calculus and are, indeed, frequently incapacitated for using it." (Thomas Hill, "Uses of Mathesis", Bibliotheca Sacra Vol. 32 (127), 1875)
"Some definite interpretation of a linear algebra would, at first sight, appear indispensable to its successful application. But on the contrary, it is a singular fact, and one quite consonant with the principles of sound logic, that its first and general use is mostly to be expected from its want of significance. The interpretation is a trammel to the use. Symbols are essential to comprehensive argument." (Benjamin Peirce, "On the Uses and Transformations of Linear Algebra", 1875)
"’Divide et impera’ is as true in algebra as in statecraft; but no less true and even more fertile is the maxim ‘auge et impera’. The more to do or to prove, the easier the doing or the proof." (James J Sylvester, "Proof of the Fundamental Theorem of Invariants", Philosophic Magazine, 1878)
“’Divide et impera’ is as true in algebra as in statecraft; but no less true and even more fertile is the maxim ‘auge et impera’. The more to do or to prove, the easier the doing or the proof.” (James J Sylvester, “Proof of the Fundamental Theorem of Invariants”, Philosophic Magazine, 1878)
“Algebra is but written geometry and geometry is but figured algebra.” (Sophie Germain, Mémoire sur les Surfaces Élastiques”, 1880)
“As is known, scientific physics dates its existence from the discovery of the differential calculus. Only when it was learned how to follow continuously the course of natural events, attempts, to construct by means of abstract conceptions the connection between phenomena, met with success. To do this two things are necessary: First, simple fundamental concepts with which to construct; second, some method by which to deduce, from the simple fundamental laws of the construction which relate to instants of time and points in space, laws for finite intervals and distances, which alone are accessible to observation (can be compared with experience).” (Bernhard Riemann, “Die partiellen Differentialgleichungen der mathematischen Physik”, 1882)
“We may always depend on it that algebra, which cannot be translated into good English and sound common sense, is bad algebra.” (William K Clifford, “Common Sense of the Exact Sciences”, 1885)
“A satisfactory theory of the imaginary quantities of ordinary algebra, which is essentially a simple case of multiple algebra, with difficulty obtained recognition in the first third of this century. We must observe that this double algebra, as it has been called, was not sought for or invented; - it forced itself, unbidden, upon the attention of mathematicians, and with its rules already formed.
But the idea of double algebra, once received, although as it were unwillingly, must have suggested to many minds more or less distinctly the possibility of other multiple algebras, of higher orders, possessing interesting or useful properties.” (Josiah W Gibbs, “On multiple Algebra”, Proceedings of the American Association for the Advancement of Science Vol. 35, 1886)
"In science nothing capable of proof ought to be accepted without proof. Though this demand seems so reasonable yet I cannot regard it as having been met even in […] that part of logic which deals with the theory of numbers. In speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that I consider the number concept entirely independent of the notions of intuition of space and time, that I consider it an immediate result from the laws of thought." (Richard Dedekind, "Was sind und was sollen die Zahlen?", 1888)
"Mathematics in its pure form, as arithmetic, algebra, geometry, and the applications of the analytic method, as well as mathematics applied to matter and force, or statics and dynamics, furnishes the peculiar study that gives to us, whether as children or as men, the command of nature in this its quantitative aspect; mathematics furnishes the instrument, the tool of thought, which we wield in this realm.” (William T Harris, “Psychologic Foundations of Education”, 1898)
"The elements of plane geometry should precede algebra for every reason known to sound educational theory. It is more fundamental, it is more concrete, and it deals with things and their relations rather than with symbols." (Nicholas M Butler, "The Meaning of Education, and Other Essays and Addresses", 1898)
"A knowledge of statistics is like a knowledge of foreign languages or of algebra; it may prove of use at any time under any circumstances." (Sir Arthur L Bowley, "Elements of Statistics", 1901)
"Today it is no longer questioned that the principles of the analysts are the more far-reaching. Indeed, the synthesists lack two things in order to engage in a general theory of algebraic configurations: these are on the one hand a definition of imaginary elements, on the other an interpretation of general algebraic concepts. Both of these have subsequently been developed in synthetic form, but to do this the essential principle of synthetic geometry had to be set aside. This principle which manifests itself so brilliantly in the theory of linear forms and the forms of the second degree, is the possibility of immediate proof by means of visualized constructions." (Felix Klein, "Riemannsche Flächen", 1906)
"In the beginning of algebra, even the most intelligent child finds, as a rule, very great difficulty. The use of letters is a mystery, which seems to have no purpose except mystification. It is almost impossible, at first, not to think that every letter stands for some particular number, if only the teacher would reveal what number it stands for." (Bertrand Russell, "Mysticism and Logic: And Other Essays", 1910)
"The ends to be attained [in mathematical teaching] are the knowledge of a body of geometrical truths to be used. In the discovery of new truths, the power to draw correct inferences from given premises, the power to use algebraic processes as a means of finding results in practical problems, and the awakening of interest In the science of mathematics." (J Craig, "A Course of Study for the Preparation of Rural School Teachers", 1912)
"This diagrammatic method has, however, serious inconveniences as a method for solving logical problems. It does not show how the data are exhibited by cancelling certain constituents, nor does it show how to combine the remaining constituents so as to obtain the consequences sought. In short, it serves only to exhibit one single step in the argument, namely the equation of the problem; it dispenses neither with the previous steps, i.e., 'throwing of the problem into an equation' and the transformation of the premises, nor with the subsequent steps, i.e., the combinations that lead to the various consequences. Hence it is of very little use, inasmuch as the constituents can be represented by algebraic symbols quite as well as by plane regions, and are much easier to deal with in this form." (Louis Couturat, "The Algebra of Logic", 1914)
“The word is of Arabic origin. ‘Al’ is the Arabic article the, and ‘gebar’ is the verb to set, to restitute.” (Tobias Dantzig & Joseph Mazur, “Number: The Language of Science”, 1930)
“By the help of God and with His precious assistance I say that algebra is a scientific art. The objects with which it deals are absolute numbers and (geometrical) magnitudes which, though themselves unknown, are related to things which are known, whereby the determination of the unknown quantities is possible. Such a thing is either a quantity or a unique relation, which is only determined by careful examination. […] What one searches for in the algebraic art are the relations which lead from the known to the unknown, to discover which is the object of algebra as stated above.” (Omar Khayyam [quoted by Daoud Suleiman Kasir in “The Algebra of Omar Khayyam”, 1931)
"The steady progress of physics requires for its theoretical formulation a mathematics which get continually more advanced. […] it was expected that mathematics would get more and more complicated, but would rest on a permanent basis of axioms and definitions, while actually the modern physical developments have required a mathematics that continually shifts its foundation and gets more abstract. Non-Euclidean geometry and noncommutative algebra, which were at one time were considered to be purely fictions of the mind and pastimes of logical thinkers, have now been found to be very necessary for the description of general facts of the physical world. It seems likely that this process of increasing abstraction will continue in the future and the advance in physics is to be associated with continual modification and generalisation of the axioms at the base of mathematics rather than with a logical development of any one mathematical scheme on a fixed foundation." (Paul A M Dirac, "Quantities singularities in the electromagnetic field", Proceedings of the Royal Society of London, 1931)
"The theory of probability as a mathematical discipline can and should be developed from axioms in exactly the same way as geometry and algebra." (Andrey Kolmogorov, "Foundations of the Theory of Probability", 1933)
“Every moment of time dictated and determined the following moment, and was itself dictated and determined by the moment that came before it. Everything was calculable: everything happened because it must; the commandments were erased from the tables of the law; and in their place came the cosmic algebra: the equations of the mathematicians.” (George Bernard Shaw, “Too True to Be Good”, 1934)
“Algebra is applied to the clouds, the irradiation of the planet benefits the rose, and no thinker would dare to say that the perfume of the hawthorn is useless to the constellation.” (Victor Hugo, “Les Miserables”, 1938)
"Algebra tends to the study of the explicit structure of postulationally defined systems closed with respect to one or more rational operations." (George D Birkhoff, "Some Recent Advances in Algebra", The American Mathematical Monthly Vol. 46, 1939)"The invariant character of a mathematical discipline can be formulated in these terms. Thus, in group theory all the basic constructions can be regarded as the definitions of co- or contravariant functors, so we may formulate the dictum: The subject of group theory is essentially the study of those constructions of groups which behave in a covariant or contravariant manner under induced homomorphisms." (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)
"The subject of group theory is essentially the study of those constructions of groups which behave in a covariant or contravariant manner under induced homomorphisms. More precisely, group theory studies functors defined on well specified categories of groups, with values in another such category." (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)
“Algebra reverses the relative importance of the factors in ordinary language. It is essentially a written language, and it endeavors to exemplify in its written structures the patterns which it is its purpose to convey. The pattern of the marks on paper is a particular instance of the pattern to be conveyed to thought. The algebraic method is our best approach to the expression of necessity, by reason of its reduction of accident to the ghost-like character of the real variable.” (Alfred N Whitehead, “Essays in Science and Philosophy”, 1948)
"Whoever thinks algebra is a trick in obtaining unknowns has thought it in vain. No attention should be paid to the fact that algebra and geometry are different in appearance. Algebras are geometric facts which are proved.” (Omar Khayyam [quoted by J.J. Winter and W. Arafat, “The Algebra of ‘Umar Khayyam’”, Journal of the Royal Asiatic Society of Bengal, Volume 41, 1950)
"The designer employing Boolean algebra is in possession of a list of theorems which may be used in simplifying the expression before him; but he may not know which ones to try first, or to which terms to apply them. He is thus forced to consider a very large number of alternative procedures in all but the most trivial cases. It is clear that a method which provides more insight into the structure of each problem is to be preferred." (Maurice Karnaugh, "The map method for synthesis of combinational logic circuits", Transactions of the American Institute of Electrical Engineers Pt 1 72 (9), 1953)
"During the last decade the methods of algebraic topology have invaded extensively the domain of pure algebra, and initiated a number of internal revolutions.
[...] The invasion of algebra has occurred on three fronts through the construction of cohomology theories for groups, Lie algebras, and associative algebras. The three subjects have been given independent but parallel developments. ." (Henri P Cartan & Samuel Eilenberg, "Homological Algebra", 1956)
“The word ‘imaginary’ is the great algebraical calamity, but it is too well established for mathematicians to eradicate. It should never have been used. Books on elementary algebra give a simple interpretation of imaginary numbers in terms of rotations. […] Although the interpretation by means of rotations proves nothing, it may suggest that there is no occasion for anyone to muddle himself into a state of mystic wonderment over nothing about the grossly misnamed ‘imaginaries’.” (Philip E B Jourdain, “The Nature of Mathematics” in [James R Newman, “The World of Mathematics” Vol. I, 1956])
”Behind these symbols lie the boldest, purest, coolest abstractions mankind has ever made. No schoolman speculating on essences and attributes ever approached anything like the abstractness of algebra.” (Susanne K Langer, “Philosophy in a New Key”, 1957)
"A logic machine is a device, electrical or mechanical, designed specifically for solving problems in formal logic. A logic diagram is a geometrical method for doing the same thing. […] A logic diagram is a two-dimensional geometric figure with spatial relations that are isomorphic with the structure of a logical statement. These spatial relations are usually of a topological character, which is not surprising in view of the fact that logic relations are the primitive relations underlying all deductive reasoning and topological properties are, in a sense, the most fundamental properties of spatial structures. Logic diagrams stand in the same relation to logical algebras as the graphs of curves stand in relation to their algebraic formulas; they are simply other ways of symbolizing the same basic structure." (Martin Gardner, "Logic Machines and Diagrams", 1958)
"Essentially, algebraic theories are an invariant notion of which the usual formalism with operations and equations may be regarded as 'presentation'." (F William Lawvere, "Functorial Semantics of Algebraic Theories", 1963)
"Categorical algebra has developed in recent years as an effective method of organizing parts of mathematics. Typically, this sort of organization uses notions such as that of the category G of all groups. [...] This raises the problem of finding some axiomatization of set theory - or of some foundational discipline like set theory - which will be adequate and appropriate to realizing this intent. This problem may turn out to have revolutionary implications vis-`a-vis the accepted views of the role of set theory." (Saunders Mac Lane, Categorical algebra and set-theoretic foundations, 1967)
"The history of arithmetic and algebra illustrates one of the striking and curious features of the history of mathematics. Ideas that seem remarkably simple once explained were thousands of years in the making." (Morris Kline, "Mathematics for the Nonmathematician", 1967)
“[…] algebra is the intellectual instrument which has been created for rendering clear the quantitative aspects of the world.” (Simone Weil, “The Organization of Thought”, 1974)
"The philosophical emphasis here is: to solve a geometrical problem of a global nature, one first reduces it to a homotopy theory problem; this is in turn reduced to an algebraic problem and is solved as such. This path has historically been the most fruitful one in algebraic topology." (Brayton Gray, "Homotopy Theory", Pure and Applied Mathematics Vol 64, 1975)
“In mathematics itself abstract algebra plays a dual role: that of a unifying link between disparate parts of mathematics and that of a research subject with a highly active life of its own.” (Israel N Herstein, ”Abstract Algebra”, 1986)
"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring Mathematics All Around You", 1986)
"The value of diagram techniques even at this rudimentary level should be clear by now: it is easier to visualize where simplifications may be found in a complicated network by searching for a reducible linkage than by examining a complicated algebraic expression."(Geoffrey E Stedman, "Diagram Techniques in Group Theory", 1990)
"Symmetries of a geometric object are traditionally described by its automorphism group, which often is an object of the same geometric class (a topological space, an algebraic variety, etc.). Of course, such symmetries are only a particular type of morphisms, so that Klein’s Erlanger program is, in principle, subsumed by the general categorical approach." (Yuri I Manin, "Topics in Noncommutative Geometry", 1991)
"We believe that numeracy is about making meaning in mathematics and being critical about maths. This view of numeracy is very different from numeracy just being about numbers, and it is a big step from numeracy or everyday maths that meant doing some functional maths. It is about using mathematics in all its guises - space and shape, measurement, data and statistics, algebra, and of course, number - to make sense of the real world, and using maths critically and being critical of maths itself. It acknowledges that numeracy is a social activity. That is why we can say that numeracy is not less than maths but more. It is why we don’t need to call it critical numeracy being numerate is being critical." (Dave Tout & Beth Marr, "Changing practice: Adult numeracy professional development", 1997)
“Algebra is the offer made by the devil to the mathematician. The devil says: I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine.” (Michael F Atiyah, 2004)
"Poetry and code - and mathematics - make us read differently from other forms of writing. Written poetry makes the silent reader read three kinds of pattern at once; code moves the reader from a static to an active, interactive and looped domain; while algebraic topology allows us to read qualitative forms and their transformations." (Stephanie Strickland & Cynthia L Jaramillo, "Dovetailing Details Fly Apart - All over, again, in code, in poetry, in chreods", 2007)
"What was clearly useful was the use of diagrams to prove certain results either in algebraic topology, homological algebra or algebraic geometry. It is clear that doing category theory, or simply applying category theory, implies manipulating diagrams: constructing the relevant diagrams, chasing arrows by going via various paths in diagrams and showing they are equal, etc. This practice suggests that diagram manipulation, or more generally diagrams, constitutes the natural syntax of category theory and the category-theoretic way of thinking. Thus, if one could develop a formal language based on diagrams and diagrams manipulation, one would have a natural syntactical framework for category theory. However, moving from the informal language of categories which includes diagrams and diagrammatic manipulations to a formal language based on diagrams and diagrammatic manipulations is not entirely obvious." (Jean-Pierre Marquis, "From a Geometrical Point of View: A Study of the History and Philosophy of Category Theory", 2009)
"The tangling and untangling of numerical relationships is called algebra. […] The point of doing algebra is not to solve equations; it’s to allow us to move back and forth between several equivalent representations, depending on the situation at hand and depending on our taste. In this sense, all algebraic manipulation is psychological. The numbers are making themselves known to us in various ways, and each different representation has its own feel to it and can give us ideas that might not occur to us otherwise." (Paul Lockhart, "Measurement", 2012)
"Geometry had its origins in the interest of working with lines, figures, and solids that could be imagined in the mind. Algebra had its origins in problems involving number - number hinged by geometric conceptions of iconic figures." (Joseph Mazur, "Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers", 2014)
"Homology translates this world of vague shapes into the rigorous world of algebra, a branch of mathematics that studies particular numerical structures and symmetries. Mathematicians study the properties of these algebraic structures in a field known as homological algebra. From the algebra they indirectly learn information about the original topological shape of the data. Homology comes in many varieties, all of which connect with algebra." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021) [source]
"As arithmetic and algebra are sciences of great clearness, certainty, and extent, which are immediately conversant about signs, upon the skillful use whereof they entirely depend, so a little attention to them may possibly help us to judge of the progress of the mind in other sciences, which, though differing in nature, design, and object, may yet agree in the general methods of proof and inquiry." (George Berkeley)
No comments:
Post a Comment