"So is not mathematical analysis then not just a vain game of the mind? To the physicist it can only give a convenient language; but isn't that a mediocre service, which after all we could have done without; and, it is not even to be feared that this artificial language be a veil, interposed between reality and the physicist's eye? Far from that, without this language most of the initimate analogies of things would forever have remained unknown to us; and we would never have had knowledge of the internal harmony of the world, which is, as we shall see, the only true objective reality." (Henri Poincaré, "The Value of Science", 1905)
"The laws of nature are drawn from experience, but to express them one needs a special language: for, ordinary language is too poor and too vague to express relations so subtle, so rich, so precise. Here then is the first reason why a physicist cannot dispense with mathematics: it provides him with the one language he can speak […]. Who has taught us the true analogies, the profound analogies which the eyes do not see, but which reason can divine? It is the mathematical mind, which scorns content and clings to pure form." (Henri Poincaré, "The Value of Science", 1905)
"A symbolical representation of a method of calculation has the same significance for a mathematician as a model or a visualisable working hypothesis has for a physicist. The symbol, the model, the hypothesis runs parallel with the thing to be represented. But the parallelism may extend farther, or be extended farther, than was originally intended on the adoption of the symbol. Since the thing represented and the device representing are after all different, what would be concealed in the one is apparent in the other." (Ernst Mach, "Space and Geometry: In the Light of physiological, phycological and physical inquiry", 1906)
"Imagine the forehead of a bull, with the protuberances from which the horns and ears start, and with the collars hollowed out between these protuberances; but elongate these horns and ears without limit so that they extend to infinity; then you will have one of the surfaces we wish to study. On such a surface geodesics may show many different aspects. There are, first of all, geodesics which close on themselves. There are some also which are never infinitely distant from their starting point even though they never exactly pass through it again; some turn continually around the right horn, others around the left horn, or right ear, or left ear; others, more complicated, alternate, in accordance with certain rules, the turns they describe around one horn with the turns they describe around the other horn, or around one of the ears. Finally, on the forehead of our bull with his unlimited horns and ears there will be geodesics going to infinity, some mounting the right horn, others mounting the left horn, and still others following the right or left ear. [...] If, therefore, a material point is thrown on the surface studied starting from a geometrically given position with a geometrically given velocity, mathematical deduction can determine the trajectory of this point and tell whether this path goes to infinity or not. But, for the physicist, this deduction is forever useless. When, indeed, the data are no longer known geometrically, but are determined by physical procedures as precise as we may suppose, the question put remains and will always remain unanswered." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)
"Indeed, a mathematical deduction is of no use to the physicist so long as it is limited to asserting that a given rigorously true proposition has for its consequence the rigorous accuracy of some such other proposition. To be useful to the physicist, it must still be proved that the second proposition remains approximately exact when the first is only approximately true. And even that does not suffice. The range of these two approximations must be delimited; it is necessary to fix the limits of error which can be made in the result when the degree of precision of the methods of measuring the data is known; it is necessary to define the probable error that can be granted the data when we wish to know the result within a definite degree of approximation." (Pierre-Maurice-Marie Duhem, "La théorie physique. Son objet, sa structure", 1906)
"The physicist can never subject an isolated hypothesis to experimental test, but only a whole group of hypotheses." (Pierre Duhem, "The Aim and Structure of Physical Theory", 1906)
"From the point of view of the physicist, a theory of matter is a policy rather than a creed; its object is to connect or co-ordinate apparently diverse phenomena, and above all to suggest, stimulate and direct experiment. It ought to furnish a compass which, if followed, will lead to observer further and further into previously unexplored regions." (Sir Joseph J Thomson, "The Corpuscular Theory of Matter", 1907)
"[...] just as the astronomer, the physicist, the geologist, or other student of objective science looks about in the world of sense, so, not metaphorically speaking but literally, the mind of the mathematician goes forth in the universe of logic in quest of the things that are there; exploring the heights and depths for facts - ideas, classes, relationships, implications, and the rest; observing the minute and elusive with the powerful microscope of his Infinitesimal Analysis; observing the elusive and vast with the limitless telescope of his Calculus of the Infinite; making guesses regarding the order and internal harmony of the data observed and collocated; testing the hypotheses, not merely by the complete induction peculiar to mathematics, but, like his colleagues of the outer world, resorting also to experimental tests and incomplete induction; frequently finding it necessary, in view of unforeseen disclosures, to abandon one hopeful hypothesis or to transform it by retrenchment or by enlargement: - thus, in his own domain, matching, point for point, the processes, methods and experience familiar to the devotee of natural science." (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1908)
"[...] physics makes progress because experiment constantly causes new disagreements to break out between laws and facts, and because physicists constantly touch up and modify laws in order that they may more faithfully represent the facts." (Pierre-Maurice-Marie Duhem, "The Aim and Structure of Physical Theory", 1908)
"Much of the skill of the true mathematical physicist and of the mathematical astronomer consists in the power of adapting methods and results carried out on an exact mathematical basis to obtain approximations sufficient for the purposes of physical measurements. It might perhaps be thought that a scheme of Mathematics on a frankly approximative basis would be sufficient for all the practical purposes of application in Physics, Engineering Science, and Astronomy, and no doubt it would be possible to develop, to some extent at least, a species of Mathematics on these lines. Such a system would, however, involve an intolerable awkwardness and prolixity in the statements of results, especially in view of the fact that the degree of approximation necessary for various purposes is very different, and thus that unassigned grades of approximation would have to be provided for. Moreover, the mathematician working on these lines would be cut off from the chief sources of inspiration, the ideals of exactitude and logical rigour, as well as from one of his most indispensable guides to discovery, symmetry, and permanence of mathematical form. The history of the actual movements of mathematical thought through the centuries shows that these ideals are the very life-blood of the science, and warrants the conclusion that a constant striving toward their attainment is an absolutely essential condition of vigorous growth. These ideals have their roots in irresistible impulses and deep-seated needs of the human mind, manifested in its efforts to introduce intelligibility in certain great domains of the world of thought." (Ernest W Hobson, [address] 1910)
"The goal is nothing other than the coherence and completeness of the system not only in respect of all details, but also in respect of all physicists of all places, all times, all peoples, and all cultures." (Max Planck, Acht Vorlesungen", 1910)
"The development of mathematics is largely a natural, not a purely logical one: mathematicians are continually answering questions suggested by astronomers or physicists; many essential mathematical theories are but the reflex outgrowth from physical puzzles." (George A L Sarton, "The Teaching of the History of Science", The Scientific Monthly, 1918)
"The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them."(Albert Einstein, "Principles of Research", 1918)
"[...] the future of thought and therefore of history lies in the hands of physicists, and therefore the future historian must seek his education in the world of mathematical physics." (Henry Adams, "The Degradation of the Democratic Dogma", 1920)
"First, the physicists in the persons of Faraday and Maxwell, proposed the 'electromagnetic field' in contradistinction to matter, as a reality of a different category. Then, during the last century, the mathematicians, […] secretly undermined belief in the evidence of Euclidean Geometry. And now, in our time, there has been unloosed a cataclysm which has swept away space, time, and matter hitherto regarded as the firmest pillars of natural science, but only to make place for a view of things of wider scope and entailing a deeper vision. This revolution was promoted essentially by the thought of one man, Albert Einstein." (Hermann Weyl," Space, Time, Matter", 1922)