04 February 2026

On Energy (-1849)

"Numbers are the sources of form and energy in the world. They are dynamic and active even among themselves […] almost human in their capacity for mutual influence." (Theon of Symyma, "Mathematics Useful for Understanding Plato" ["Expositio rerum mathematicarum ad legendum Platonem utilem", cca. 100–130)

"The principles of all knowledge are founded in mind; the mind of man, either animated by desire or pressed by necessity, puts in action it’s various energies, and unfolds the seeds of knowledge." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 3, 1794)

"But, as the universe is an extremely complex machine; the arrangement of the various parts of which it is composed, its preservation, and the play and energy of its springs, depend on an infinite number of general as well as particular laws. The most general admit of no exception. The exceptions attach on the detail; their number increases in proportion as the laws are specrfſed and particularized, and thus become more and more limited and restricted by other laws. Hence the exceptions themselves iorm new laws and means employed for a higher end. Apparent disorder in the parts is thus absorbed in the order of the whole, and the small defects gradually vanish in the eye of the philosopher as he proceeds to view nature on a more extended scale." (Johann H Lambert, "The System of the World", 1800)

"The imagination […] that reconciling and mediatory power, which incorporating the reason in images of the sense and organizing (as it were) the flux of the senses by the permanence and self-circling energies of the reason, gives birth to a system of symbols, harmonious in themselves, and consubstantial with the truths of which they are the conductors." (Samuel T Coleridge, "The Statesman's Manual", 1816)

"For truth is simple and without fuss, whereas error affords opportunity for dissipating time and energy." (Johann Wolfgang von Goethe, 1829)

"There seems to me to be something analogous to polarized intensity in the pure imaginary part; and to unpolarized energy" (indifferent to direction) in the real part of a quaternion: and thus we have some slight glimpse of a future Calculus of Polarities. This is certainly very vague […]" (Sir William R Hamilton,"On Quaternions; or on a new System of Imaginaries in Algebra", 1844)


On Energy (1850-1874)

"Modern civilisation rests upon physical science; take away her gifts to our own country, and our position among the leading nations of the world is gone tomorrow; for it is physical science only that makes intelligence and moral energy stronger than brute force." (Julian Huxley, "A Lobster; or, The Study of Zoology", 1861)

"To Nature nothing can be added; from Nature nothing can be taken away; the sum of her energies is constant, and the utmost man can do in the pursuit of physical truth, or in the applications of physical knowledge, is to shift the constituents of the never-varying total. The law of conservation rigidly excludes both creation and annihilation. Waves may change to ripples, and ripples to waves; magnitude may be substituted for number, and number for magnitude; asteroids may aggregate to suns, suns may resolve themselves into florae and faunae, and floras and faunas melt in air: the flux of power is eternally the same. It rolls in music through the ages, and all terrestrial energy - the manifestations of life as well as the display of phenomena - are but the modulations of its rhythm." (John Tyndall, "Conclusion of Heat Considered as a Mode of Motion: Being a Course of Twelve Lectures Delivered at the Royal Institution of Great Britain in the Season of 1862", 1863)

"[…] the quantities of heat which must be imparted to, or withdrawn from a changeable body are not the same, when these changes occur in a non-reversible manner, as they are when the same changes occur reversibly. In the second place, with each non-reversible change is associated an uncompensated transformation […] I propose to call the magnitude S the entropy of the body […] I have intentionally formed the word entropy so as to be as similar as possible to the word energy […]" (Rudolf Clausius, "The Mechanical Theory of Heat", 1867)

"If for the entire universe we conceive the same magnitude to be determined, consistently and with due regard to all circumstances, which for a single body I have called entropy, and if at the same time we introduce the other and simpler conception of energy, we may express in the following manner the fundamental laws of the universe which correspond to the two fundamental theorems of the mechanical theory of heat. 1. The energy of the universe is constant. 2. The entropy of the universe tends to a maximum." (Rudolf Clausius, "The Mechanical Theory of Heat - With its Applications to the Steam Engine and to Physical Properties of Bodies", 1867)

"The second fundamental theorem [the second law of thermodynamics], in the form which I have given to it, asserts that all transformations occurring in nature may take place in a certain direction, which I have assumed as positive, by themselves, that is, without compensation […] the entire condition of the universe must always continue to change in that first direction, and the universe must consequently approach incessantly a limiting condition. […] For every body two magnitudes have thereby presented themselves - the transformation value of its thermal content [the amount of inputted energy that is converted to 'work'], and its disgregation [separation or disintegration]; the sum of which constitutes its entropy." (Rudolf Clausius, "The Mechanical Theory of Heat", 1867)

"Any opinion as to the form in which the energy of gravitation exists in space is of great importance, and whoever can make his opinion probable will have, made an enormous stride in physical speculation. The apparent universality of gravitation, and the equality of its effects on matter of all kinds are most remarkable facts, hitherto without exception; but they are purely experimental facts, liable to be corrected by a single observed exception. We cannot conceive of matter with negative inertia or mass; but we see no way of accounting for the proportionality of gravitation to mass by any legitimate method of demonstration. If we can see the tails of comets fly off in the direction opposed to the sun with an accelerated velocity, and if we believe these tails to be matter and not optical illusions or mere tracks of vibrating disturbance, then we must admit a force in that direction, and we may establish that it is caused by the sun if it always depends upon his position and distance." (James C Maxwell, [Letter to William Huggins] 1868)

"The whole science of heat is founded Thermometry and Calorimetry, and when these operations are understood we may proceed to the third step, which is the investigation of those relations between the thermal and the mechanical properties of substances which form the subject of Thermodynamics. The whole of this part of the subject depends on the consideration of the Intrinsic Energy of a system of bodies, as depending on the temperature and physical state, as well as the form, motion, and relative position of these bodies. Of this energy, however, only a part is available for the purpose of producing mechanical work, and though the energy itself is indestructible, the available part is liable to diminution by the action of certain natural processes, such as conduction and radiation of heat, friction, and viscosity. These processes, by which energy is rendered unavailable as a source of work, are classed together under the name of the Dissipation of Energy. " (James C Maxwell, "Theory of Heat", 1871)

"It is difficult, however, for the mind which has once recognised the analogy between the phenomena of self-induction and those of the motion of material bodies, to abandon altogether the help of this analogy, or to admit that it is entirely superficial and misleading. The fundamental dynamical idea of matter, as capable by its motion of becoming the recipient of momentum and of energy, is so interwoven with our forms of thought that, when ever we catch a glimpse of it in any part of nature, we feel that a path is before us leading, sooner or later, to the complete understanding of the subject." (James C Maxwell, "A Treatise on Electricity and Magnetism" Vol. II, 1873)

On Energy (1910-1919)

"Though the ultimate state of the universe may be its vital and psychical extinction, there is nothing in physics to interfere with the hypothesis that the penultimate state might be the millennium - in other words a state in which a minimum of difference of energy - level might have its exchanges so skillfully canalises that a maximum of happy and virtuous consciousness would be the only result." (William James, [Letter to Henry Adams] 1910)

"The laws expressing the relations between energy and matter are, however, not solely of importance in pure science. They necessarily come first in order [...] in the whole record of human experience, and they control, in the last resort, the rise or fall of political systems, the freedom or bondage of nations, the movements of commerce and industry, the origin of wealth and poverty, and the general physical welfare of the race." (Frederick Soddy, "Matter and Energy", 1912)

"What is the imagination? Only an arm or weapon of the interior energy; only the precursor of the reason." (Ralph W Emerson, "Miscellanies, Natural history of intellect", 1912)

"For thought raised on specialization the most potent objection to the possibility of a universal organizational science is precisely its universality. Is it ever possible that the same laws be applicable to the combination of astronomic worlds and those of biological cells, of living people and the waves of the ether, of scientific ideas and quanta of energy? [...] Mathematics provide a resolute and irrefutable answer: yes, it is undoubtedly possible, for such is indeed the case. Two and two homogenous separate elements amount to four such elements, be they astronomic systems or mental images, electrons or workers; numerical structures are indifferent to any element, there is no place here for specificity." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"The miracles of religion are to be discredited, not because we cannot conceive of them, but because they run counter to all the rest of our knowledge; while the mysteries of science, such as chemical affinity, the conservation of energy, the indivisibility of the atom, the change of the non-living into the living […] extend the boundaries of our knowledge, though the modus operandi of the changes remains hidden." (John Burroughs, "Scientific Faith", The Atlantic Monthly, 1915)

"If Thought is capable of being classed with Electricity, or Will with chemical affinity, as a mode of motion, it seems necessary to fall at once under the second law of thermodynamics as one of the energies which most easily degrades itself, and, if not carefully guarded, returns bodily to the cheaper form called Heat. Of all possible theories, this is likely to prove the most fatal to Professors of History." (Henry Adams, "The Degradation of the Democratic Dogma", 1919)

"There is a conservation of matter and of energy, there may be a conservation of life; or if not of life, of something which transcends life." (Oliver J Lodge, "Christopher: A Study in Human Personality", 1918)


On Energy (1940-1949)

"Thinking is an experimental dealing with small quantities of energy, just as a general moves miniature figures over a map before setting his troops in action.," (Sigmund Freud, "New Introductory Lectures on Psychoanalysis", 1932)

"True equilibria can occur only in closed systems and that, in open systems, disequilibria called ‘steady states’, or ‘flow equilibria’ are the predominant and characteristic feature. According to the second law of thermodynamics a closed system must eventually attain a time-independent equilibrium state, with maximum entropy and minimum free energy. An open system may, under certain conditions, attain a time-independent state where the system remains constant as a whole and in its phases, though there is a continuous flow of component materials. This is called a steady state. Steady states are irreversible as a whole. […] A closed system in equilibrium does not need energy for its preservation, nor can energy be obtained from it. In order to perform work, a system must be in disequilibrium, tending toward equilibrium and maintaining a steady state, Therefore the character of an open system is the necessary condition for the continuous working capacity of the organism." (Ludwig on Bertalanffy, "Theoretische Biologie: Band 1: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus", 1932)

"A state of equilibrium in a system does not mean, further, that the system is without tension. Systems can, on the contrary, also come to equilibrium in a state of tension" (e.g., a spring under tension or a container with gas under pressure).The occurrence of this sort of system, however, presupposes a certain firmness of boundaries and actual segregation of the system from its environment" (both of these in a functional, not a spatial, sense). If the different parts of the system are insufficiently cohesive to withstand the forces working toward displacement" (i.e., if the system shows insufficient internal firmness, if it is fluid), or if the system is not segregated from its environment by sufficiently firm walls but is open to its neighboring systems, stationary tensions cannot occur. Instead, there occurs a process in the direction of the forces, which encroaches upon the neighboring regions with diffusion of energy and which goes in the direction of an equilibrium at a lower level of tension in the total region. The presupposition for the existence of a stationary state of tension is thus a certain firmness of the system in question, whether this be its own inner firmness or the firmness of its walls." (Kurt Lewin, "A Dynamic Theory of Personality", 1935)

"Essential for any conception of the cell is that it is no static system. It is dynamic. It is energy-cycles, suites of oxidation and reduction, concatenated ferment-actions. It is like a magic hive the walls of whose chambered spongework are shifting veils of ordered molecules, and rend and renew as operations rise and cease. A world of surfaces and streams." (Sir Charles Sherrington, "Man on His Nature", 1940)

"Purposeful active behavior may be subdivided into two classes: ‘feed-back’" (or ‘teleological’) and ‘non-feed-back’" (or ‘non-teleological’). The expression feed-back is used by engineers in two different senses. In a broad sense it may denote that some of the output energy of an apparatus or machine is returned as input; an example is an electrical amplifier with feed-back. The feed-back is in these cases positive - the fraction of the output which reenters the object has the same sign as the original input signal. Positive feed-back adds to the input signals, it does not correct them. The term feed-back is also employed in a more restricted sense to signify that the behavior of an object is controlled by the margin of error at which the object stands at a given time with reference to a relatively specific goal. The feed-back is then negative, that is, the signals from the goal are used to restrict outputs which would otherwise go beyond the goal. It is this second meaning of the term feed-back that is used here." (Arturo Rosenblueth, Norbert Wiener & Julian Bigelow, "Behavior, Purpose and Technology", Philosophy of Science Vol. 10" (1), 1943)

"It seems significant that according to quantum physics the indestructibility of energy on one hand - which expresses its timeless existence - and the appearance of energy in space and time on the other hand correspond to two contradictory" (complementary) aspects of reality. In fact, both are always present, but in individual cases the one or the other may be more pronounced." (Wolfgang Pauli, Moderne Beispiele zur Hintergrundsphysik" ["Modern Examples of Background Physics", 1948)

"In classical physics, most of the fundamental laws of nature were concerned either with the stability of certain configurations of bodies, e.g. the solar system, or else with the conservation of certain properties of matter, e.g. mass, energy, angular momentum or spin. The outstanding exception was the famous Second Law of Thermodynamics, discovered by Clausius in 1850. This law, as usually stated, refers to an abstract concept called entropy, which for any enclosed or thermally isolated system tends to increase continually with lapse of time. In practice, the most familiar example of this law occurs when two bodies are in contact: in general, heat tends to flow from the hotter body to the cooler. Thus, while the First Law of Thermodynamics, viz. the conservation of energy, is concerned only with time as mere duration, the Second Law involves the idea of trend." (Gerald J Whitrow, "The Structure of the Universe: An Introduction to Cosmology", 1949)

"Myth is the secret opening through which the inexhaustible energies of the cosmos pour into human cultural manifestation. Religions, philosophies, arts, the social forms of primitive and historic man, prime discoveries in science and technology, the very dreams that blister sleep, boil up from the basic, magic ring of myth." (Joseph Campbell, "The Hero with a Thousand Faces", 1949

03 February 2026

Terry Pratchett - Collected Quotes

"A stray thought, wandering through the dimensions in search of a mind to harbour it, slid into his brain." (Terry Pratchett, "The Colour of Magic", 1983)

"The dimension of the imagination is much more complex than those of time and space, which are very junior dimensions indeed." (Terry Pratchett, "The Colour of Magic", 1983)

"Real stupidity beats artificial intelligence every time." (Terry Pratchett, "Hogfather", 1996)

"Belief is a force. It’s a weak force, by comparison with gravity; when it comes to moving mountains, gravity wins every time. But it still exists." (Terry Pratchett, "Pyramids", 1989)

"It is now known to science that there are many more dimensions than the classical four. Scientists say that these don’t normally impinge on the world because the extra dimensions are very small and curve in on themselves, and that since reality is fractal most of it is tucked inside itself. This means either that the universe is more full of wonders than we can hope to understand or, more probably, that scientists make things up as they go along." (Terry Pratchett, Pyramids, 1989)

"Most people don’t listen. They use the time when someone else is speaking to think of what they’re going to say next. True Listeners have always been revered among oral cultures, and prized for their rarity value." (Terry Pratchett, "Pyramids", 1989)

"People needed to believe in gods, if only because it was so hard to believe in people." (Terry Pratchett, "Pyramids", 1989)

"The gods of the Disc have always been fascinated by humanity’s incredible ability to say exactly the wrong thing at the wrong time." (Terry Pratchett, "Pyramids", 1989)

"science: A way of finding things out and then making them work. Science explains what is happening around us the whole time." (Terry Pratchett, "Wings", 1990)

"The trouble with having an open mind, of course, is that people will insist on coming along and trying to put things in it." (Terry Pratchett, "Diggers", 1990)

"The trouble with being a god is that you’ve got no one to pray to." (Terry Pratchett, "Small Gods", 1992)

"Chaos is found in greatest abundance wherever order is being sought. It always defeats order, because it is better organized." (Terry Pratchett, "Interesting Times", 1995)

On Literature: On Perception (From Fiction to Science-Fiction)

"True science investigates and brings to human perception such truths and such knowledge as the people of a given time and society consider most important. Art transmits these truths from the region of perception to the region of emotion." (Lev N Tolstoy, "What is Art?", 1898)

"So-called common sense relies on programmed nonperception, concealment, or ridicule of everything that doesn’t fit into the conventional nineteenth century vision of a world that can be explained down to the last detail." (Stanislaw Lem, "The Investigation", 1959)

"He believed that the so-called hallucinations caused by some of these drugs (with emphasis, he continually reminded himself, on the word 'some') were not hallucinations at all, but perceptions of other zones of reality. Some of them were frightening; some appeared lovely." (Philip K Dick & Roger Zelazny, "Deus Irae", 1976)

"If mankind were to continue in other than the present barbarism, a new path must be found, a new civilization based on some other method than technology. Space is an illusion, and time as well. There is no such factor as either time or space. We have been blinded by our own cleverness, blinded by false perceptions of those qualities that we term eternity and infinity. There is another factor that explains it all, and once this universal factor is recognized, everything grows simple. There is no longer any mystery, no longer any wonder, no longer any doubt; for the simplicity of it all lies before us [...]" (Clifford D Simak,"A Heritage of Stars", 1977)

"It is change, continuing change, inevitable change, that is the dominant factor in society today. No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be - and naturally this means that there must be an accurate perception of the world as it will be. This, in turn, means that our statesmen, our businessmen, our everyman must take on a science fictional way of thinking, whether he likes it or not, or even whether he knows it or not. Only so can the deadly problems of today be solved." (Isaac Asimov, [foreword to Robert Holdstock (Ed.), "Encyclopedia of Science Fiction] 1978)

"The Bistromathic Drive had revealed to him that time and distance were one, that mind and Universe were one, that perception and reality were one, and that the more one traveled the more one stayed in one place, and that what with one thing and another he would rather just stay put for a while and sort it all out in his mind, which was now at one with the Universe so it shouldn’t take too long." (Douglas Adams, "Life, the Universe, and Everything", 1982)

"One reason nature pleases us is its endless use of a few simple principles: the cube-square law; fractals; spirals; the way that waves, wheels, trig functions, and harmonic oscillators are alike; the importance of ratios between small primes; bilateral symmetry; Fibonacci series, golden sections, quantization, strange attractors, path-dependency, all the things that show up in places where you don’t expect them [...] these rules work with and against each other ceaselessly at all levels, so that out of their intrinsic simplicity comes the rich complexity of the world around us. That tension - between the simple rules that describe the world and the complex world we see - is itself both simple in execution and immensely complex in effect. Thus exactly the levels, mixtures, and relations of complexity that seem to be hardwired into the pleasure centers of the human brain - or are they, perhaps, intrinsic to intelligence and perception, pleasant to anything that can see, think, create? - are the ones found in the world around us." (John Barnes, "Mother of Storms", 1994)

On Energy (2000-2009)

"The second law states that entropy always increases within closed systems. This is really a statement about average behaviour. High entropy means uniformity, differences ('order') are damped by interactions within the system. For water in a tub the water molecules exchange energy via what are essentially elastic collisions. Thus water everywhere in the tub soon acquires the same temperature. What the water does not do is to separate spontaneously into areas of hot and cold water. That would be to decrease the entropy in the system." (David G Green, "Self-organisation in complex systems", 2000)

"Zero is behind all of the big puzzles in physics. The infinite density of the black hole is a division by zero. The big bang creation from the void is a division by zero. The infinite energy of the vacuum is a division by zero. Yet dividing by zero destroys the fabric of mathematics and the framework of logic - and threatens to undermine the very basis of science. […] The universe begins and ends with zero." (Charles Seife ."Zero, the Biography of a Dangerous Idea", 2000)

"According to quantum theory, the ground state, or lowest energy state, of a pendulum is not just sitting at the lowest energy point, pointing straight down. That would have both a definite position and a definite velocity, zero. This would be a violation of the uncertainty principle, which forbids the precise measurement of both position and velocity at the same time. The uncertainty in the position multiplied by the uncertainty in the momentum must be greater than a certain quantity, known as Planck's constant - a number that is too long to keep writing down, so we use a symbol for it: ħ." (Stephen W Hawking, "The Universe in a Nutshell", 2001)

"Entropy [...] is the amount of disorder or randomness present in any system. All non-living systems tend toward disorder; left alone they will eventually lose all motion and degenerate into an inert mass. When this permanent stage is reached and no events occur, maximum entropy is attained. A living system can, for a finite time, avert this unalterable process by importing energy from its environment. It is then said to create negentropy, something which is characteristic of all kinds of life." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Expressed in terms of entropy, open systems are negentropic, that is, tend toward a more elaborate structure. As open systems, organisms which are in equilibrium are capable of working for a long time by use of the constant input of matter and energy. Closed systems, however, increase their entropy, tend to run down and can therefore be called ’dying systems’. When reaching a steady state the closed system is not capable of performing any work." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Information is neither matter nor energy, it is rather an abstract concept of the same kind as entropy, which must be considered a conceptual relative. 'Amount of information' is a metaphorical term and has in fact no numerical properties. " (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Living systems in general are energy transducers which use information to perform more efficiently, converting one form of energy into another, and converting energy into information. Living species have developed a genius system to overcome entropy by their procreative faculty. […] Storing the surplus energy in order to survive is to reverse the entropic process or to create negentropy. A living being can only resist the degradation of its own structure. The entropic process influencing the structure and environment of the whole system is beyond individual control." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Potential energy is organized energy, heat is disorganized energy and entropy therefore results in dissolution and disorder. The sum of all the quantities of heat lost in the course of all the activities that have taken place in the universe equals the total accumulation of entropy. A popular analogy of entropy is that it is not possible to warm oneself on something which is colder than oneself. […] Note also that maximun entropy is maximum randomization." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"So the ground state, or lowest energy state, of a pendulum does not have zero energy, as one might expect. Instead, even in its ground state a pendulum or any oscillating system must have a certain minimum amount of what are called zero point fluctuations. These mean that the pendulum won't necessarily be pointing straight down but will also have a probability of being found at a small angle to the vertical. Similarly, even in the vacuum or lowest energy state, the waves in the Maxwell field won't be exactly zero but can have small sizes. The higher the frequency" (the number of swings per minute) of the pendulum or wave, the higher the energy of the ground state." (Stephen W Hawking, "The Universe in a Nutshell", 2001)

"The second law of thermodynamics states that all energy in the universe degrades irreversibly. Thus, differences between energy forms must decrease over time. Everything is spread!" (The principle of degradation of energy with regard to quality.) Translated to the area of systems the law tells us that the entropy of an isolated system always increases. Another consequence is that when two systems are joined together, the entropy of the united system is greater than the sum of the entropies of the individual systems." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"A theory makes certain predictions and allows calculations to be made that can be tested directly through experiments and observations. But a theory such as superstrings talks about quantum objects that exist in a multidimensional space and at incredibly short distances. Other grand unified theories would require energies close to those experienced during the creation of the universe to test their predictions." (F David Peat, "From Certainty to Uncertainty", 2002)

"All living organisms must feed on continual flows of matter and energy: from their environment to stay alive, and all living organisms continually produce waste. However, an ecosystem generates no net waste, one species' waste being another species' food. Thus, matter cycles continually through the web of life." (Fritjof Capra, "The Hidden Connections", 2002)

"Lessons from chaos theory show that energy is always needed for reorganization. And for a new order to appear an organization must be willing to allow a measure of chaos to occur; chaos being that which no one can totally control. It means entering a zone where no one can predict the final outcome or be truly confident as to what will happen." (F David Peat, "From Certainty to Uncertainty", 2002)

"To make a quantum observation or to register a measurement in any way, at least one quantum of energy must be exchanged between apparatus and quantum object. But because a quantum is indivisible, it cannot be split or divided. At the moment of observation we cannot know if that quantum came from the measuring apparatus or from the quantum object." (F David Peat, "From Certainty to Uncertainty", 2002)

"In string theory one studies strings moving in a fixed classical spacetime. […] what we call a background-dependent approach. […] One of the fundamental discoveries of Einstein is that there is no fixed background. The very geometry of space and time is a dynamical system that evolves in time. The experimental observations that energy leaks from binary pulsars in the form of gravitational waves - at the rate predicted by general relativity to the […] accuracy of eleven decimal place - tell us that there is no more a fixed background of spacetime geometry than there are fixed crystal spheres holding the planets up." (Lee Smolin, "The New Humanists: Science at the Edge", 2003)

"We don't know what energy is, any more than we know what information is, but as a now robust scientific concept we can describe it in precise mathematical terms, and as a commodity we can measure, market, regulate and tax it." (Hans Christian von Baeyer, "Information, The New Language of Science", 2003)

"Quantum-mechanical effects appear in physical systems that are exceedingly small. A small system means very tiny objects with very tiny amounts of energy, moving around over very short time intervals. Quantum effects show up dramatically once we arrive at length scales the size of the atom, about one ten-thousandth of a millionth of a meter. In fact, we simply cannot understand an atom without quantum mechanics. This is not to say that nature itself suddenly 'switches off'' classical mechanics and 'switches on' quantum mechanics when we enter this new submicroscopic realm. Quantum mechanics is always valid and always holds true at all scales of nature. Rather, quantum effects gradually become more and more pronounced as we descend into the world of atoms. Quantum mechanics is the ultimate set of rules, as far as we know, that governs how nature works" (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"At the foundation of classical thermodynamics are the first and second laws. The first law formulates that the total energy of a system is conserved, while the second law states that the entropy of an isolated system can only increase. The second law implies that the free energy of an isolated system is successively degraded by diabatic processes over time, leading to entropy production. This eventually results in an equilibrium state of maximum entropy. In its statistical interpretation, the direction towards higher entropy can be interpreted as a transition to more probable states." (Axel Kleidon & Ralph D Lorenz, "Entropy Production by Earth System Processes" [in "Non- quilibrium Thermodynamics and the Production of Entropy"], 2005)

"For very long pendulums the spurious effects are small, and the main concern is the dissipation of energy as the pendulum gradually losses amplitude. However, for short pendulums the spurious effects are, not negligible. After the following literary divertissement, we note some ways that builders of Foucault pendulums have overcome the complicating effects of these limitations and thereby produced workable pendulums that are much smaller than Foucault’s original giant creation." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

 "Pendulum clocks exemplify important physical concepts. The clock needs to have some method of transferring energy to the pendulum to maintain its oscillation. There also needs to be a method whereby the pendulum regulates the motion of the clock. These two requirements are encompassed in one remarkable mechanism called the escapement. The escapement is a marvelous invention in that it makes the pendulum clock one of the first examples of an automaton with self-regulating feedback." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

"Any technical discussion of noise begins with white noise because white noise is pure or ideal noise. White noise serves as the gold standard of noise. Scientists and engineers have explored hundreds of other noise types but most of these deviate from white noise in some specific way. White noise is noisy because it has a wide and flat band of frequencies if one looks at its spectrum. This reflects the common working definition of noise as a so-called wideband signal. Good signals or wanted signals concentrate their energy on a comparatively narrow band of the frequency spectrum. Hence good signals tend to be so-called narrowband signals at least relative to the wide band of white noise. White noise is so noisy because its spectrum is as wide as possible - it runs the whole infinite length of the frequency spectrum itself. So pure or ideal white noise exists only as a mathematical abstraction. It cannot exist physically because it would require infinite energy." (Bart Kosko, "Noise", 2006)

"In formal terms, the ground state energy" (vacuum energy) of the electromagnetic quantum field is infinite. This causes mathematical trouble in quantum electrodynamics. [2](Eberhard Zeidler, "Quantum Field Theory II: Quantum Electrodynamics", 2006)

"Is the universe noise? That question is not as strange as it sounds. Noise is an unwanted signal. A signal is anything that conveys information or ultimately anything that has energy. The universe consists of a great deal of energy. Indeed a working definition of the universe is all energy anywhere ever. So the answer turns on how one defines what it means to be wanted and by whom." (Bart Kosko, "Noise", 2006)

"Noise is an unwanted signal. A signal is anything that conveys information or ultimately anything that has energy. The universe consists of a great deal of energy. Indeed a working definition of the universe is all energy anywhere ever. So the answer turns on how one defines what it means to be wanted and by whom." (Bart Kosko, "Noise", 2006)

"Symmetries of the action functional lead to symmetries of the Euler– Lagrange equations. In particular, invariance of the action functional under time translations is responsible for the conservation of energy. Degeneracy of the second variation generates local symmetries also called gauge symmetries. The use of symmetries is basic for modern physics. [3](Eberhard Zeidler, "Quantum Field Theory I: Gauge Theory", 2006)

"Waves are used in nature in order to transport energy and information. [2](Eberhard Zeidler, "Quantum Field Theory II: Quantum Electrodynamics", 2006)

"Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. […] whilst leaving some underlying theme unchanged. […] for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time […] the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation… discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be." (John D Barrow, "New Theories of Everything", 2007)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat" ("dissipation"). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson,"Design and Control of Self-organizing Systems", 2007)

"The universe is full of energy, but much of it is at equilibrium. At equilibrium no energy can flow, and therefore it cannot be used for work, any more than the level waters of a pond can be used to drive a water-wheel. It is on the flow of energy out of equilibrium - the small fraction of 'useful' energy, 'exergy' - that life depends." (Arthur C Clarke, "Firstborn", 2007)

"We can describe general relativity using either of two mathematically equivalent ideas: curved space-time or metric field. Mathematicians, mystics and specialists in general relativity tend to like the geometric view because of its elegance. Physicists trained in the more empirical tradition of high-energy physics and quantum field theory tend to prefer the field view, because it corresponds better to how we" (or our computers) do concrete calculations." (Frank Wilczek, "The Lightness of Being: Mass, Ether, and the Unification of Forces", 2008)

"Heat is the energy of random chaotic motion, and entropy is the amount of hidden microscopic information." (Leonard Susskind, "The Black Hole War", 2008)

"If universality is one of the observed characteristics of complex dynamical systems in many fields of study, a second characteristic that flows from the study of these systems is that of emergence. As self-organizing systems go about their daily business, they are constantly exchanging matter and energy with their environment, and this allows them to remain in a state that is far from equilibrium. That allows spontaneous behavior to give rise to new patterns." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"In short, synergy is the consequence of the energy expended in creating order. It is locked up in the viable system created, be it an organism or a social system. It is at the level of the system. It is not discernible at the level of the system. It is not discernible at the level of the system's components. Whenever the system is dismembered to examine its components, this binding energy dissipates." (J-C Spender, "Organizational Knowledge, Collective Practice and Penrose Rents", 2009)

"Mechanics is the science of motion. It describes how things move from om one point to another as time passes, the greater the distance moved each second so the greater is the speed. If something moving hits you, the impact will depend not just on how fast it’s travelling but also how massive it is. It is the momentum that matters: the product of mass and velocity. Mechanics also deals with energy, especially the energy due to motion, ‘kinetic energy’." (Frank Close, "Antimatter", 2009)

"Self-organizing networks suffer various types of random damage. Therefore, if the network remained static, it would soon become dysfunctional. Some networks have developed highly specific screening systems which recognize and repair random damage. On the one hand, this process requires energy, which arrives in the form of perturbations or noise. On the other hand, noise-triggered network restructuring will repeat a few steps of the original self-organization and therefore constitutes a much cheaper way of providing a continuous repair function, with the additional advantage that it is always adaptive with respect to the actual environment of the network." (Péter Csermely, "Weak Links: The Universal Key to the Stabilityof Networks and Complex Systems", 2009)

"There’s matter, like the electron; antimatter, like the positron; and then there are things that are neither matter nor antimatter. The most familiar example of something that is beyond substance is electromagnetic radiation. All electromagnetic radiation, from gamma rays through X-rays and ultra-violet to visible light, infra red, and radio waves, consists of photons of different energies. Matter and antimatter can cancel one another out, their annihilation leaving non-substance in the form of photons; if the conditions are right this sequence can happen in reverse where photons turn into pieces of matter and antimatter." (Frank Close, "Antimatter", 2009)

"Using matrices, Dirac was able to write an equation relating the total energy of a body to a sum of its energy at rest and its energy in motion, all consistent with Einstein’s theory of relativity. The fact that matrices keep account of what happens when things rotate was a bonus, as the maths was apparently saying that an electron can itself rotate: can spin! Furthermore, the fact that he had been able to solve the mathematics by using the simplest matrices, where a single number was replaced by two columns of pairs, implied a ‘two-ness’ to the spin, precisely what the Zeeman effect had implied. The missing ingredi ent in Schrodinger’s theory had miraculously emerged from the mathematics of matrices, which had been forced on Dirac by the requirements of Einstein’s theory of relativity." (Frank Close, "Antimatter", 2009)

On Energy (2010-2019)

"[...] information is just as material as energy, though far less ubiquitous because it involves coding, and codes are conventional as well as artificial. [...] In sum, the concept of information is derivative, nor primary; in particular, it depends upon that of matter. Indeed, all information is transmitted by some physical process, just as every bit of energy is the energy of some material entity, and every energy transfer is a physical process that connects two or more physical entities. " (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"We are beginning to see the entire universe as a holographically interlinked network of energy and information, organically whole and self-referential at all scales of its existence. We, and all things in the universe, are non-locally connected with each other and with all other things in ways that are unfettered by the hitherto known limitations of space and time." (Ervin László, "Cosmos: A Co-creator's Guide to the Whole-World", 2010)

"The laws of thermodynamics tell us something quite different. Economic activity is merely borrowing low-entropy energy inputs from the environment and transforming them into temporary products and services of value. In the transformation process, often more energy is expended and lost to the environment than is embedded in the particular good or service being produced." (Jeremy Rifkin, "The Third Industrial Revolution", 2011)

"The reactions that break down large molecules into small ones do not require an input of energy, but the reactions that build up large molecules require and input of energy. This is consistent with the laws of thermodynamics, which say that large, orderly molecules tend to break down into small, disorderly molecules." (Stanley A Rice, "Life of Earth: Portrait of a Beautiful, Middle-aged Stressed-out World", 2011)

"We can draw several general conclusions. First, because populations of living organisms tend to grow exponentially, numbers can rise very rapidly. This explains the inevitable population pressure that helped Darwin realize the role of natural selection, Second, exponential growth must always be a short-term, temporary phenomenon; for living organisms, the growth typically stops because of predation or a lack of sufficient nutrients or energy. Third, these laws about growth apply to all species- our intelligence cannot make us immune to simple mathematical laws. This is a critical lesson, because human population has been growing exponentially for the past few centuries. Of course, our intelligence gives us one option not available to bacteria. Exponential growth can stop only through some combination of an increase in the death rate and a decrease in the birth rate." (Jeffrey O Bennett & Seth Shostak, "Life in the universe" 3rd Ed., 2012)

"Artificial intelligence is the mimicking of human thought and cognitive processes to solve complex problems automatically. AI uses techniques for writing computer code to represent and manipulate knowledge." (Radian Belu, "Artificial Intelligence Techniques for Solar Energy and Photovoltaic Applications", 2013)

"Chaos provides order. Chaotic agitation and motion are needed to create overall, repetitive order. This ‘order through fluctuations’ keeps dynamic markets stable and evolutionary processes robust. In essence, chaos is a phase transition that gives spontaneous energy the means to achieve repetitive and structural order." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"In essence, chaos is a phase transition that gives spontaneous energy the means to achieve repetitive and structural order." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"Political structures are excessively paternalistic, and to maintain them requires a high level of energy. The massive amounts of energy they consume are unsustainable and invite political meltdowns, bailouts, and fallout. On the other hand, proponents of complexity theory take the paradigm–shattering view that less is more. They understand that, paradoxically enough, the complexity of simplicity is the key to the emergence of systems, repeatable patterns and the social glue that holds community together and creates order. Anyone can make simplicity complicated; it takes a true genius to make the complicated simple." (Lawrence K Samuels, "Defense of Chaos", 2013)

"One of the evident facts about the world is the stability of empty space-time. In classical general relativity we can explain this as a consequence of the positive energy theorem […] the positive energy theorem must extend in some suitable form to any viable quantum theory of gravity." (Lee Smolin "Positive energy in quantum gravity", 2014)

"Before considering the wave equation for mechanical waves, you should understand the difference between the motion of individual particles and the motion of the wave itself. Although the medium is disturbed as a wave goes by, which means that the particles of the medium are displaced from their equilibrium positions, those particles don’t travel very far from their undisturbed positions. The particles oscillate about their equilibrium positions, but the wave does not carry the particles along – a wave is not like a steady breeze or an ocean current which transports material in bulk from one location to another. For mechanical waves, the net displacement of material produced by the wave over one cycle, or over one million cycles, is zero. So, if the particles aren’t being carried along with the wave, what actually moves at the speed of the wave? […] the answer is energy." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"The natural effect of processes going on in the Universe is to move from a state of order to a state of disorder, unless there is an input of energy from outside." (John R Gribbin, "The Time Illusion", 2016)

"The principle of cyclic progression - interconnected systems driven by an external energy source will tend to a cyclic progression in which system variety is generated, dominance emerges to suppress the variety, the dominant mode decays or collapses, and survivors emerge to regenerative variety." (Dmitry A Novikov, "Cybernetics: From Past to Future", 2016)

"A coherent inclusive study of the nature of mathematics would contribute to our understanding of problem-solving in general. Solving problems is how progress is made in all of science and technology. The synthesizing energy to achieve such a result would be a worthy and inspiring task for philosophy." (Reuben Hersh, "Mathematics as an Empirical Phenomenon, Subject to Modeling", 2017)

"The Second Law of Thermodynamics states that in an isolated system" (one that is not taking in energy), entropy never decreases." (The First Law is that energy is conserved; the Third, that a temperature of absolute zero is unreachable.) Closed systems inexorably become less structured, less organized, less able to accomplish interesting and useful outcomes, until they slide into an equilibrium of gray, tepid, homogeneous monotony and stay there." (Steven Pinker, "The Second Law of Thermodynamics", 2017)

"Granularity is ubiquitous in nature: light is made of photons, the particles of light. The energy of electrons in atoms can acquire only certain values and not others. The purest air is granular, and so, too, is the densest matter. Once it is understood that Newton’s space and time are physical entities like all others, it is natural to suppose that they are also granular. Theory confirms this idea: loop quantum gravity predicts that elementary temporal leaps are small, but finite." (Carlo Rovelli, "The Order of Time", 2018)

"[…] Einstein showed, for 'stuff' like space and time, seemingly stable, unchangeable aspects of nature; in truth, it’s the relationship between space and time that always stays the same, even as space contracts and time dilates. Like energy and matter, space and time are mutable manifestations of deeper, unshakable foundations: the things that never vary no matter what." (K C Cole, "The Simple Idea Behind Einstein’s Greatest Discoveries", Quanta Magazine, 2019)

On Energy (1980-1989)

"Thus, in physics, entropy is associated with the possibility of converting thermal energy into mechanical energy. If the entropy does not change during a process, the process is reversible. If the entropy increases, the available energy decreases. Statistical mechanics interprets an increase of entropy as a decrease in order or, if we wish, as a decrease in our knowledge." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals & Noise" 2nd Ed., 1980)

"Time goes forward because energy itself is always moving from an available to an unavailable state. Our consciousness is continually recording the entropy change in the world around us. [...] we experience the passage of time by the succession of one event after another. And every time an event occurs anywhere in this world energy is expended and the overall entropy is increased. To say the world is running out of time then, to say the world is running out of usable energy. In the words of Sir Arthur Eddington, 'Entropy is time's arrow'." (Jeremy Rifkin, "Entropy", 1980)

"The basis of this theory is that in nature there is an inherent uncertainty or unpredictability that manifests itself only on an atomic scale. For example, the position of a subatomic particle such as an electron may not be a well-defined concept at all; it should be envisaged as jiggling around in a random sort of a way. Energy, too, becomes a slightly nebulous concept, subject to capricious and unpredictable changes." (Paul C W Davies, "The Edge of Infinity: Where the Universe Came from and How It Will End", 1981)

"The world's present industrial civilization is handicapped by the coexistence of two universal, overlapping, and incompatible intellectual systems: the accumulated knowledge of the last four centuries of the properties and interrelationships of matter and energy; and the associated monetary culture which has evolved from folkways of prehistoric origin. […] Despite their inherent incompatibilities, these two systems during the last two centuries have had one fundamental characteristic in common, namely exponential growth, which has made a reasonably stable coexistence possible. But, for various reasons, it is impossible for the matter-energy system to sustain exponential growth for more than a few tens of doublings, and this phase is by now almost over. The monetary system has no such constraints, and according to one of its most fundamental rules, it must continue to grow by compound interest." (Marion K Hubbert, "Two Intellectual Systems: Matter-energy and the Monetary Culture", [seminar] 1981)

"A Universal Turing Machine is an ideal mathematical object; it represents a formal manipulation of symbols and owes allegiance to criteria of logical consistency but not to physical laws and constraints. Thus, for example, physical variables play no essential role in the concept of algorithm. In reality, however, every logical operation occurs at a minimum cost of KT of energy dissipation" (where K is Boltzman's constant and T is temperature) and, in fact, occurs at a much higher cost to insure reliability." (Claudia Carello et al, "The Inadequacies of the Computer Metaphor", 1982)

"The difference is that energy is a property of the microstates, and so all observers, whatever macroscopic variables they may choose to define their thermodynamic states, must ascribe the same energy to a system in a given microstate. But they will ascribe different entropies to that microstate, because entropy is not a property of the microstate, but rather of the reference class in which it is embedded. As we learned from Boltzmann, Planck, and Einstein, the entropy of a thermodynamic state is a measure of the number of microstates compatible with the macroscopic quantities that you or I use to define the thermodynamic state." (Edwin T Jaynes, "Papers on Probability, Statistics, and Statistical Physics", 1983)

"There is a fact, or if you wish, a law governing all natural phenomena that are known to date. There is no known exception to this law - it is exact as far as we know. The law is called the conservation of energy. It states that there is a certain quantity, which we call energy, that does not change in the manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity which does not change when something happens." (Richard P Feynman et al, "The Feynman Lectures on Physics" Vol. 1, 1983)

"To a considerable degree science consists in originating the maximum amount of information with the minimum expenditure of energy. Beauty is the cleanness of line in such formulations along with symmetry, surprise, and congruence with other prevailing beliefs." (Edward O Wilson,"Biophilia", 1984)

"In the real world, none of these assumptions are uniformly valid. Often people want to know why mathematics and computers cannot be used to handle the meaningful problems of society, as opposed, let us say, to the moon boondoggle and high energy-high cost physics. The answer lies in the fact that we don't know how to describe the complex systems of society involving people, we don't understand cause and effect, which is to say the consequences of decisions, and we don't even know how to make our objectives reasonably precise. None of the requirements of classical science are met. Gradually, a new methodology for dealing with these 'fuzzy' problems is being developed, but the path is not easy." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"To a considerable degree science consists in originating the maximum amount of information with the minimum expenditure of energy. Beauty is the cleanness of line in such formulations along with symmetry, surprise, and congruence with other prevailing beliefs." (Edward O Wilson, "Biophilia", 1984)

"The power and glory of symmetry allow us to bypass completely the construction of strong interaction theories of dubious utility. We are able to contain and isolate our ignorance. [...] Symmetry tells us that states in the same multiplet must have the same energy, but it cannot tell us what that energy is." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"If grand unified theories are correct, we ought to be able to derive the relative power of the strong, weak, and electromagnetic interactions at accessible energies from their presumed equality at much higher energies. When this is attempted, a wonderful result emerges. …in the form first calculated by Howard Georgi, Helen Quinn, and Steven Weinberg […] The couplings of strong-interaction gluons decrease, those of the [weak interaction] W bosons stay roughly constant, and those of the [electromagnetic interaction] photons increase at short distances [or high energies] - so they all tend to converge, as desired." (Frank Wilczek, "Longing for the Harmonies: Themes and Variations from Modern Physics", 1987)

"What is conserved, in modern physics, is not any particular substance or material but only much more abstract entities such as energy, momentum, and electric charge. The permanent aspects of reality are not particular materials or structures but rather the possible forms of structures and the rules for their transformation." (Frank Wilczek, "Longing for the Harmonies: Themes and Variations from Modern Physics", 1987)

"The concept of entropy relates to the tendency of things to move toward greater disorder, or disorganization. […] The second law of thermodynamics expresses precisely the same concept. This states that heat dissipates from a central source and the energy becomes degraded, although total energy remains constant" (the first law of thermodynamics). Entropy suggests that organisms, organizations, societies, machines, and so on, will rapidly deteriorate into disorder and death." The reason they do not is because animate things can self-organize and inanimate things may be serviced by man. These are negentropic activities which require energy. Energy, however, can be made available only by further degradation. Ultimately, therefore, entropy wins the day and the attempts to create order can seem rather a daunting task in the entropic scheme of things. Holding back entropy, however, is another of the challenging tasks for the systems scientist." (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

"Physics is the basic science of matter and energy, and engineering is physics applied to structures and machines. They and chemistry are the sciences that biologists need to explain the structure and mechanism of living things." (R McNeill Alexander, "Dynamics of Dinosaurs and Other Extinct Giants", 1989)

On Energy (1990-1999)

"In physics, there are numerous phenomena that are said to be 'true on all scales', such as the Heisenberg uncertainty relation, to which no exception has been found over vast ranges of the variables involved (such as energy versus time, or momentum versus position). But even when the size ranges are limited, as in galaxy clusters (by the size of the universe) or the magnetic domains in a piece of iron near the transition point to ferromagnetism (by the size of the magnet), the concept true on all scales is an important postulate in analyzing otherwise often obscure observations." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Three laws governing black hole changes were thus found, but it was soon noticed that something unusual was going on. If one merely replaced the words 'surface area' by 'entropy' and 'gravitational field' by 'temperature', then the laws of black hole changes became merely statements of the laws of thermodynamics. The rule that the horizon surface areas can never decrease in physical processes becomes the second law of thermodynamics that the entropy can never decrease; the constancy of the gravitational field around the horizon is the so-called zeroth law of thermodynamics that the temperature must be the same everywhere in a state of thermal equilibrium. The rule linking allowed changes in the defining quantities of the black hole just becomes the first law of thermodynamics, which is more commonly known as the conservation of energy." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"What is an attractor? It is the set on which the point P, representing the system of interest, is moving at large times" (i.e., after so-called transients have died out). For this definition to make sense it is important that the external forces acting on the system be time independent" (otherwise we could get the point P to move in any way we like). It is also important that we consider dissipative systems" (viscous fluids dissipate energy by self-friction). Dissipation is the reason why transients die out. Dissipation is the reason why, in the infinite-dimensional space representing the system, only a small set" (the attractor) is really interesting." (David Ruelle, "Chance and Chaos", 1991)

"Symmetry is bound up in many of the deepest patterns of Nature, and nowadays it is fundamental to our scientific understanding of the universe. Conservation principles, such as those for energy or momentum, express a symmetry that" (we believe) is possessed by the entire space-time continuum: the laws of physics are the same everywhere." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"The new information technologies can be seen to drive societies toward increasingly dynamic high-energy regions further and further from thermodynamical equilibrium, characterized by decreasing specific entropy and increasingly dense free-energy flows, accessed and processed by more and more complex social, economic, and political structures." (Ervin László, "Information Technology and Social Change: An Evolutionary Systems Analysis", Behavioral Science 37, 1992)

"The description of the evolutionary trajectory of dynamical systems as irreversible, periodically chaotic, and strongly nonlinear fits certain features of the historical development of human societies. But the description of evolutionary processes, whether in nature or in history, has additional elements. These elements include such factors as the convergence of existing systems on progressively higher organizational levels, the increasingly efficient exploitation by systems of the sources of free energy in their environment, and the complexification of systems structure in states progressively further removed from thermodynamic equilibrium." (Ervin László et al, "The Evolution of Cognitive Maps: New Paradigms for the Twenty-first Century", 1993)

"The universe is driven by the complex interaction between three ingredients: matter, energy, and enlightened self-interest." (Marc S Zicree, "Survivors" [episode of Babylon 5], 1994)

"In contemplating natural phenomena, we frequently have to distinguish between effective complexity and logical depth. For example, the apparently complicated pattern of energy levels of atomic nuclei might easily be misattributed to some complex law at the fundamental level, but it is now believed to follow from a simple underlying theory of quarks, gluons, and photons, although lengthy calculations would be required to deduce the detailed pattern from the basic equations. Thus the pattern has a good deal of logical depth and very little effective complexity." (Murray Gell-Mann, "What is Complexity?", Complexity Vol. 1" (1), 1995)

"It [Living Systems Theory" (LST)] involves observing and measuring important relationships between inputs and outputs of the total system and identifying the structures that perform each of the sub‐system processes. […] The flows of relevant matter, energy, and information through the system and the adjustment processes of subsystems and the total system are also examined. The status and function of the system are analyzed and compared with what is average or normal for that type of system. If the system is experiencing a disturbance in some steady state, an effort is made to discover the source of the strain and correct it." (James G Miller & Jessie L Miller, "Applications of living systems theory", Systemic Practice and Action Research 8, 1995)

"As we explore physics at higher and higher energy, revealing its structure at shorter and shorter distances, we discover more and more symmetry." (David J Gross,"The Role of Symmetry in Fundamental Physics", 1996)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"As we explore physics at higher and higher energy, revealing its structure at shorter and shorter distances, we discover more and more symmetry." (David J Gross, "The Role of Symmetry in Fundamental Physics", 1996)

"Contrary to what happens at equilibrium, or near equilibrium, systems far from equilibrium do not conform to any minimum principle that is valid for functions of free energy or entropy production." (Ilya Prigogine, "The End of Certainty: Time, Chaos, and the New Laws of Nature", 1996)

"The universe would have expanded in a smooth way from a single point. As it expanded, it would have borrowed energy from the gravitational field, to create matter. As any economist could have predicted, the result of all that borrowing, was inflation. The universe expanded and borrowed at an ever-increasing rate. Fortunately, the debt of gravitational energy will not have to be repaid until the end of the universe." (Stephen Hawking," The Beginning of Time", 1996)

"A pendulum swings in a circle, so there is a lowest point that it can possibly reach - hanging vertically downwards. Any change in potential energy must be compensated by an equal and opposite change in kinetic energy: if the bob gets higher, it has to move more slowly; if it gets lower, it has to move faster. Imagine grabbing the pendulum by its bob and raising it to some chosen height. Hold it steady. Your hand did some work, and increased the bob's potential energy. The kinetic energy is zero because the pendulum is not moving. Now let go, and from now on let the pendulum move as it wishes. Gravity pulls the bob downwards, so the potential energy decreases. Kinetic energy must increase to compensate, so the weight starts to fall. At some stage the bob must reach the lowest point of the circle: here its potential energy is zero, so all of the energy has become kinetic. Not only is it moving at this point - it is moving as fast as it can possibly go." (Ian Stewart, "The Magical Maze: Seeing the world through mathematical eyes", 1997)

"These three insights - the network pattern, the flow of energy, and the nutrient cycles—are essential to the new scientific conception of life. Scientists have formulated them in complicated technical language. They speak of 'autopoietic networks', 'dissipative structures', and 'catalytic cycles'. But the basic phenomena described by those technical terms are the web of life, the flow of energy, and the cycles of nature." (Fritjof Capra," Turn, Turn, Turn: Understanding Nature’s Cycles", 1997)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"In a closed system, the change in entropy must always be 'positive', meaning toward death. However, in open biological or social systems, entropy can be arrested and may even be transformed into negative entropy. - a process of more complete organization and enhanced ability to transform resources. Why? Because the system imports energy and resources from its environment, leading to renewal. This is why education and learning are so important, as they provide new and stimulating input" (termed neg-entropy) that can transform each of us." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"There has to be a constant flow of energy to maintain the organization of the system and to ensure its survival. Equilibrium is another word for death." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Mathematicians have always appreciated clever notations; but symbolism is usually seen as a tool - it's what the tool does that we really care about. Fair enough. But if we want a richer appreciation of mathematics, we should focus some of our energy on this remarkable tool - notation. Besides mathematics, poetry alone works wonders with it." (James R Brown,"Philosophy of Mathematics", 1999)

"[...] synergy is the consequence of the energy expended in creating order. It is locked up in the viable system created, be it an organism or a social system. It is at the level of the system. It is not discernible at the level of the system. It is not discernible at the level of the system’s components. Whenever the system is dismembered to examine its components, this binding energy dissipates." (J-C Spender, "Organizational Knowledge, Collective Practice and Penrose Rents", 1999)

Related Posts Plugin for WordPress, Blogger...

On Energy (-1849)

"Numbers are the sources of form and energy in the world. They are dynamic and active even among themselves […] almost human in their c...