Showing posts with label thresholds. Show all posts
Showing posts with label thresholds. Show all posts

07 September 2025

On Thresholds (-1999)

"We who stand on the threshold of a new century can look back on an era of unparalleled progress. Looking into the future an equally bright prospect greets our eyes; on all sides fruitful fi elds of research invite our labor and promise easy and rich returns. Surely this is the golden age of mathematics!" (Pierpont, James Pierpont, "The History of Mathematics in the Nineteenth Century", Bulletin of the American Mathematical Society, 2nd Series, Vol. 11, 1904–1905) 

"Those terrible logarithms, when I happened to open a table of them, made my head swim, with their columns of figures; actual fright, not unmixed with respect, overwhelmed me on the very threshold of that arithmetical cave." (Jean-Henri Fabre, "The Life of the Fly", 1913)

"When we are thrilled with the wonder of the world, the heights and depths of things, the beauty of it all, we approach the door of natural religion. And when the Nature-feeling is not superfi cial but informed with knowledge, with no gain of the hard-won analysis unused, we may reach the threshold. And when we feel that our scientifi c cosmology leaves Isis still veiled, and when our attempts at philosophical interpretation give us a reasoned conviction of a meaning behind the process, we may perhaps enter in." (J Arthur Thomson, "The System of Animate Nature" Vol. 1, 1920) 

"The scientific spirit brings about a particular attitude towards worldly matters; before religious matters it pauses for a little, hesitates, and fi nally there too crosses the threshold. In this process there is no stopping; the greater the number of men to whom the treasures of knowledge become accessible, the more widespread is the falling-away from religious belief…" (Sigmund Freud, "The Future of an Illusion", 1927) 

"There are scientists who make their chief discovery at the threshold of their scientific career, and spend the rest of their lives substantiating and elaborating it, mapping out the details of their discovery, as it were. There are other scientists who have to tread a long, diffi cult and often tortuous path to its end before they succeed in crowning their efforts with a discovery." (V Safonov, "Courage",  1953) 

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics." (Lotfi A Zadeh, 1973)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"Threshold functions (are described) which facilitate the careful study of the structure of a graph as it grows and specifically reveal the mysterious circumstances surrounding the abrupt appearance of the Unique Giant Component which systematically absorbs its neighbours, devouring the larger first and ruthlessly continuing until the last Isolated Nodes have been swallowed up, whereupon the Giant is suddenly brought under control by a Spanning Cycle." (Edgar Palmer, "Graphical Evolution", 1985)

"[…] an epidemic does not always percolate through an entire population. There is a percolation threshold below which the epidemic has died out before most of the people have." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In the realms of nature it is impossible to predict which way a bifurcation will cut. The outcome of a bifurcation is determined neither by the past history of a system nor by its environment, but only by the interplay of more or less random fluctuations in the chaos of critical destabilization. One or another of the fluctuations that rock such a system will suddenly 'nucleate'. The nucleating fluctuation will amplify with great rapidity and spread to the rest of the system. In a surprisingly short time, it dominates the system’s dynamics. The new order that is then born from the womb of chaos reflects the structural and functional characteristics of the nucleated fluctuation. [...] Bifurcations are more visible, more frequent, and more dramatic when the systems that exhibit them are close to their thresholds of stability - when they are all but choked out of existence." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"When a system is 'stressed' beyond certain threshold limits as, for example, when it is heated up, or its pressure is increased, it shifts from one set of attractors to another and then behaves differently. To use the language of the theory, the system 'settles into a new dynamic regime'. It is at the point of transition that a bifurcation takes place. The system no longer follows the trajectory of its initial attractors, but responds to new attractors that make the system appear to be behaving randomly. It is not behaving randomly, however, and this is the big shift in our understanding caused by dynamical systems theory. It is merely responding to a new set of attractors that give it a more complex trajectory. The term bifurcation, in its most significant sense, refers to the transition of a system from the dynamic regime of one set of attractors, generally more stable and simpler ones, to the dynamic regime of a set of more complex and 'chaotic' attractors." (Ervin László, "Vision 2020: Reordering Chaos for Global Survival", 1994)

"Once we overcome our fear of being tiny, we find ourselves on the threshold of a vast and awesome Universe that utterly dwarfs - in time, in space, and in potential - the tidy anthropocentric proscenium of our ancestors." (Carl Sagan, "Pale Blue Dot: A Vision of the Human Future in Space", 1994)

"The resolution of how to divide the stakes in an uncompleted game marked the beginning of a systematic analysis of probability - the measure of our confidence that something is going to happen. It brings us to the threshold of the quantification of risk." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

On Thresholds (2000-)

"For any given population of susceptibles, there is some critical combination of contact frequency, infectivity, and disease duration just great enough for the positive loop to dominate the negative loops. That threshold is known as the tipping point. Below the tipping point, the system is stable: if the disease is introduced into the community, there may be a few new cases, but on average, people will recover faster than new cases are generated. Negative feedback dominates and the population is resistant to an epidemic. Past the tipping point, the positive loop dominates .The system is unstable and once a disease arrives, it can spread like wildfire that is, by positive feedback-limited only by the depletion of the susceptible population." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The tipping point is that magic moment when an idea, trend, or social behavior crosses a threshold, tips, and spreads like wildfire." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"This possibility of sudden change is at the center of the idea of the Tipping Point and might well be the hardest of all to accept. [...] The Tipping Point is the moment of critical mass, the threshold, the boiling point." (Malcolm T Gladwell, "The Tipping Point: How Little Things Can Make a Big Difference", 2000)

"[…] real networks not only are connected but are well beyond the threshold of one. Random network theory tells us that as the average number of links per node increases beyond the critical one, the number of nodes left out of the giant cluster decreases exponentially. That is, the more links we add, the harder it is to find a node that remains isolated. Nature does not take risks by staying close to the threshold. It well surpasses it."  (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"The arrow of time, through the defi ning role it plays in everyday life and its intimate link with the origin of the universe, lies at a singular threshold between the reality we experience and the more refi ned reality cutting-edge science seeks to uncover." (Brian Greene, "The Fabric of the Cosmos: Space, Time, and the Texture of Reality", 2004)

"In the case of a complex system, nonlinear behavior can happen as disturbances or changes in the system, each one relatively small by itself, accumulate. Outwardly, everything seems to be normal: the system doesn’t generate any surprises. At some point, though, the behavior of the whole system suddenly shifts to a radically new mode. This kind of behavior is often called a threshold effect, because the shift occurs when a critical threshold - usually unseen and often unexpected - is crossed." (Thomas Homer-Dixon, "The Upside of Down: Catastrophe, Creativity, and the Renewal of Civilization", 2006)

"But in mathematics there is a kind of threshold effect, an intellectual tipping point. If a student can just get over the first few humps, negotiate the notational peculiarities of the subject, and grasp that the best way to make progress is to understand the ideas, not just learn them by rote, he or she can sail off merrily down the highway, heading for ever more abstruse and challenging ideas, while an only slightly duller student gets stuck at the geometry of isosceles triangles." (Ian Stewart, "Why Beauty is Truth: A history of symmetry", 2007)

"The simplest basic architecture of an artificial neural network is composed of three layers of neurons - input, output, and intermediary (historically called perceptron). When the input layer is stimulated, each node responds in a particular way by sending information to the intermediary level nodes, which in turn distribute it to the output layer nodes and thereby generate a response. The key to artificial neural networks is in the ways that the nodes are connected and how each node reacts to the stimuli coming from the nodes it is connected to. Just as with the architecture of the brain, the nodes allow information to pass only if a specific stimulus threshold is passed. This threshold is governed by a mathematical equation that can take different forms. The response depends on the sum of the stimuli coming from the input node connections and is 'all or nothing'." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The existence of dark matter particles can never be disproven by direct experiment because ever lighter particles and/or ever smaller cross sections just below the current detection threshold may be postulated for every non-detection. There exists no falsifiable prediction concerning the DM particles." (Pavel Kroupa, "The dark matter crisis: falsification of the current standard model of cosmology", 2012)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"Flaws can be found in any research design if you look hard enough. […] In our experience, it is good scientific practice to refine one's research hypotheses in light of the data. Working scientists are also keenly aware of the risks of data dredging, and they use confidence intervals and p-values as a tool to avoid getting fooled by noise. Unfortunately, a by-product of all this struggle and care is that when a statistically significant pattern does show up, it is natural to get excited and believe it. The very fact that scientists generally don't cheat, generally don't go fishing for statistical significance, makes them vulnerable to drawing strong conclusions when they encounter a pattern that is robust enough to cross the p < 0.05 threshold." (Andrew Gelman & Eric Loken, "The Statistical Crisis in Science", American Scientist Vol. 102(6), 2014)

"Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity." (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"Bifurcation is a qualitative, topological change of a system’s phase space that occurs when some parameters are slightly varied across their critical thresholds. Bifurcations play important roles in many real-world systems as a switching mechanism. […] There are two categories of bifurcations. One is called a local bifurcation, which can be characterized by a change in the stability of equilibrium points. It is called local because it can be detected and analyzed only by using localized information around the equilibrium point. The other category is called a global bifurcation, which occurs when non-local features of the phase space, such as limit cycles (to be discussed later), collide with equilibrium points in a phase space. This type of bifurcation can’t be characterized just by using localized information around the equilibrium point."  (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"[...] living organisms manifest deep new physical principles, and that we are on the threshold of uncovering and harnessing those principles. What is different this time, and why it has taken so many decades to discover the real secret of life, is that the new physics is not simply a matter of an additional type of force - a 'life force' - but something altogether more subtle, something that interweaves matter and information, wholes and parts, simplicity and complexity." (Paul Davies, "The Demon in the Machine: How Hidden Webs of Information Are Solving the Mystery of Life", 2019) 

Related Posts Plugin for WordPress, Blogger...

On Thresholds (-1999)

"We who stand on the threshold of a new century can look  back on an era of unparalleled progress. Looking into the  future an equally ...