"It has become increasingly evident in recent times, however, that nature works on a different plan. Her fundamental laws do not govern the world as it appears in our mental picture in any very direct way, but instead they control a substratum of which we cannot form a mental picture without introducing irrelevancies." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)
"Mathematics is the tool specially suited for dealing with abstract concepts of any kind and there is no limit to its power in this field. " (Paul A M Dirac, "The Principles of Quantum Mechanics ", 1930)
"When an observation is made on any atomic system that has been prepared in a given way and is thus in a given state, the result will not in general be determinate, i.e. if the experiment is repeated several times under identical conditions several different results may be obtained. If the experiment is repeated a large number of times it will be found that each particular result will be obtained a definite fraction of the total number of times, so that one can say there is a definite probability of its being obtained any time that the experiment is performed. This probability the theory enables one to calculate. " (Paul A M Dirac, "The Principles of Quantum Mechanics ", 1930)
"Let us now discuss the extent of the mathematical quality in Nature. According to the mechanistic scheme of physics or to its relativistic modification, one needs for the complete description of the universe not merely a complete system of equations of motion, but also a complete set of initial conditions, and it is only to the former of these that mathematical theories apply. The latter are considered to be not amenable to theoretical treatment and to be determinable only from observation." (Paul A M Dirac, "The Relation Between Mathematics And Physics", Proceedings of the Royal Society of Edinburgh ", 1938-1939)
"Pure mathematics and physics are becoming ever more closely connected, though their methods remain different. One may describe the situation by saying that the mathematician plays a game in which he himself invents the rules while the while the physicist plays a game in which the rules are provided by Nature, but as time goes on it becomes increasingly evident that the rules which the mathematician finds interesting are the same as those which Nature has chosen. [...] Possibly, the two subjects will ultimately unify, every branch of pure mathematics then having its physical application, its importance in physics being proportional to its interest in mathematics." (Paul A M Dirac, "The Relation Between Mathematics and Physics", Proceedings of the Royal Society of Edinburgh, 1938-1939)
"The main object of physical systems is not the provision of pictures, but the formulation of laws governing phenomena, and the application of these laws to the discovery of new phenomena. If a picture exists, so much the better; but whether a picture exists or not is a matter of only secondary importance." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)
"The researcher worker, in his efforts to express the fundamental laws of Nature in mathematical form, should strive mainly for mathematical beauty. He should still take simplicity into consideration in a subordinate way to beauty. […] It often happens that the requirements of simplicity and beauty are the same, but where they clash the latter must take precedence. " (Paul A M Dirac, "The Relation Between Mathematics and Physics ", Proceedings of the Royal Society , Volume LIX, 1939)
"There is thus a possibility that the ancient dream of philosophers to connect all Nature with the properties of whole numbers will some day be realized. To do so physics will have to develop a long way to establish the details of how the correspondence is to be made. One hint for this development seems pretty obvious, namely, the study of whole numbers in modern mathematics is inextricably bound up with the theory of functions of a complex variable, which theory we have already seen has a good chance of forming the basis of the physics of the future. The working out of this idea would lead to a connection between atomic theory and cosmology." (Paul A M Dirac, [Lecture delivered on presentation of the James Scott prize] 1939)
"A physical law must possess mathematical beauty. " (Paul A M Dirac, 1956)
"[…] it is more important to have beauty in one's equations that to have them fit experiment. […] It seems that if one is working from the point of view of getting beauty in one's equations, and if one has really a sound insight, one is on a sure line of progress." (Paul A M Dirac, "The Evolution of the Physicist’s Picture of Nature ", Scientific American, 1963)
"A theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data. God is a mathematician of a very high order, and He used very advanced mathematics in constructing the universe." (Paul A M Dirac, "The Evolution of the Physicist’s Picture of Nature ", Scientific American, 1963)
"It seems to be one of the fundamental features of nature the fundamental physical laws are described in terms of a mathematical theory of great beauty and power, needing quite a high standard of mathematics for one to understand it. You may wonder: Why is nature constructed along these lines? One can only answer that our present knowledge seems to show that nature is so constructed. We simply have to accept it. " (Paul A M Dirac , "The Evolution of the Physicist’s Picture of Nature ", Scientific American, 1963)
"Just by studying mathematics we can hope to make a guess at the kind of mathematics that will come into the physics of the future. " (Paul A M Dirac , "The Evolution of the Physicist’s Picture of Nature ", Scientific American, 1963)
"I consider that I understand an equation when I can predict the properties of its solutions, without actually solving it. " (Paul A M Dirac)
"In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite. " (Paul A. M. Dirac)
"One might describe the mathematical quality in Nature by saying that the universe is so constituted that mathematics is a useful tool in its description. However, recent advances in physical science show that this statement of the case is too trivial. The connection between mathematics and the description of the universe goes far deeper than this, and one can get an appreciation of it only from a thorough examination of the various facts that make it up. " (Paul A M Dirac)
No comments:
Post a Comment