"After all the progress I have made in these matters, I am still not happy with Algebra, because it provides neither the shortest ways nor the most beautiful constructions of Geometry. This is why when it comes to that, I think that we need another analysis which is properly geometric or linear, which expresses to us directly situm, in the same way as algebra expresses magnitudinem. And I think that I have the tools for that, and that we might represent figures and even engines and motion in character, in the same way as algebra represents numbers in magnitude." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)
"I found the elements of a new characteristic, completely different from Algebra and which will have great advantages for the exact and natural mental representation, although without figures, of everything that depends on the imagination. Algebra is nothing but the characteristic of undetermined numbers or magnitudes. But it does not directly express the place, angles and motions, from which it follows that it is often difficult to reduce, in a computation, what is in a figure, and that it is even more difficult to find geometrical proofs and constructions which are enough practical even when the Algebraic calculus is all done." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)
"The branch of geometry that deals with magnitudes has been zealously studied throughout the past, but there is another branch that has been almost unknown up to now; Leibniz spoke of it first, calling it the ‘geometry of position’ (geometria situs). This branch of geometry deals with relations dependent on position; it does not take magnitudes into considerations, nor does it involve calculation with quantities. But as yet no satisfactory definition has been given of the problems that belong to this geometry of position or of the method to be used in solving them." (Leonhard Euler, 1735)
"The use of figures is, above all, then, for the purpose of making known certain relations between the objects that we study, and these relations are those which occupy the branch of geometry that we have called Analysis Situs [that is, topology], and which describes the relative situation of points and lines on surfaces, without consideration of their magnitude." (Henri Poincaré, "Analysis Situs", Journal de l'Ecole Polytechnique 1, 1895)
"[…] geometry is the art of reasoning well from badly drawn figures; however, these figures, if they are not to deceive us, must satisfy certain conditions; the proportions may be grossly altered, but the relative positions of the different parts must not be upset." (Henri Poincaré, 1895)
"And here is what makes this analysis situs interesting to us; it is that geometric intuition really intervenes there. When, in a theorem of metric geometry, one appeals to this intuition, it is because it is impossible to study the metric properties of a figure as abstractions of its qualitative properties, that is, of those which are the proper business of analysis situs. It has often been said that geometry is the art of reasoning correctly from badly drawn figures. This is not a capricious statement; it is a truth that merits reflection. But what is a badly drawn figure? It is what might be executed by the unskilled draftsman spoken of earlier; he alters the properties more or less grossly; his straight lines have disquieting zigzags; his circles show awkward bumps. But this does not matter; this will by no means bother the geometer; this will not prevent him from reasoning." (Henri Poincaré, "Dernières pensées", 1913)
"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are.” (Henri Poincaré, “Dernières pensées”, 1913)
"Imagine any sort of model and a copy of it done by an awkward artist: the proportions are altered, lines drawn by a trembling hand are subject to excessive deviation and go off in unexpected directions. From the point of view of metric or even projective geometry these figures are not equivalent, but they appear as such from the point of view of geometry of position [that is, topology]." (Henri Poincaré, "Dernières pensées", 1920)
"Topology begins where sets are implemented with some cohesive properties enabling one to define continuity." (Solomon Lefschetz, "Introduction to Topology", 1949)
"In topology we are concerned with geometrical facts that do not even involve the concepts of a straight line or plane but only the continuous connectiveness between points of a figure." (David Hilbert, "Geometry and Imagination", 1952)
"Topology, or analysis situs, is a modern branch of geometry which […] does not bring in the notions of size or measure, but only that of continuity. It concerns itself, then, only with qualitative properties of figures. More precisely, one can define the aim of topology as follows. A property of a set is said to be topological if it can be expressed by means of the concept of continuity. A topological property of a set is called a topological invariant if it is preserved under all homeomorphisms. Topology is the study of topological properties and, especially, topological invariants of figures." (Maurice Frechet & Ky Fan, "Initiation to Combinatorial Topology", 1967)
"In geometry, topology is the study of properties of shapes that are independent of size or shape and are not changed by stretching, bending, knotting, or twisting." (M C Escher, 1971)
"Topology is not ‘designed to guide us’ in structure. It is this structure." (Jacques Lacan, "L’Étourdit", 1972)
"Topology has to do with those properties of a space which are left unchanged by the kind of transformation that we have called a topological equivalence or homeomorphism. But what sort of spaces interest us and what exactly do we mean by a 'space? The idea of a homeomorphism involves very strongly the notion of continuity [...]" (Mark A Armstrong, "Basic Topology", 1979)
"In every subject one looks for the topological and algebraic structures involved, since these structures form a unifying core for the most varied branches of mathematics." (K Weise and H Noack, "Aspects of Topology", 1986)"No other theory known to science [other than superstring theory] uses such powerful mathematics at such a fundamental level. […] because any unified field theory first must absorb the Riemannian geometry of Einstein’s theory and the Lie groups coming from quantum field theory. […] The new mathematics, which is responsible for the merger of these two theories, is topology, and it is responsible for accomplishing the seemingly impossible task of abolishing the infinities of a quantum theory of gravity." (Michio Kaku, "Hyperspace", 1995)
"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)
"[...] there is no area of mathematics where thinking abstractly has paid more handsome dividends than in topology, the study of those properties of geometrical objects that remain unchanged when we deform or distort them in a continuous fashion without tearing, cutting, or breaking them." (John L Casti, "Five Golden Rules", 1995)
"Topology studies the properties of geometrical objects that remain unchanged under transformations called homeomorphisms and deformations." (Victor V Prasolov, "Intuitive Topology", 1995)"The connection of topology with physics is no passing interlude but rather represents a length affair." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)
"Topology studies those characteristics of figures which are preserved under a certain class of continuous transformations. Imagine two figures, a square and a circular disk, made of rubber. Deformations can convert the square into the disk, but without tearing the figure it is impossible to convert the disk by any deformation into an annulus. In topology, this intuitively obvious distinction is formalized."
"Topology is the property of something that doesn't change when you bend it or stretch it as long as you don't break anything." (Edward Witten, [interview] 2003)
"Topology is the mathematical study of properties of objects which are preserved through deformations, twistings, and stretchings but not through breaks or cuts." (David Robinson & David Goforth, "The Topology of the 2×2 Games: A New Periodic Table". 2005)
"Poetry and code - and mathematics - make us read differently from other forms of writing. Written poetry makes the silent reader read three kinds of pattern at once; code moves the reader from a static to an active, interactive and looped domain; while algebraic topology allows us to read qualitative forms and their transformations." (Stephanie Strickland & Cynthia L Jaramillo, "Dovetailing Details Fly Apart - All over, again, in code, in poetry, in chreods", 2007)
"Topology is geometry without distance or angle. The geometrical objects of study, not rigid but rather made of rubber or elastic, are especially stretchy." (Stephen Huggett & David Jordan, "A Topological Aperitif", 2009)
"[…] topology is the study of those properties of geometric objects which remain unchanged under bi-uniform and bi-continuous transformations. Such transformations can be thought of as bending, stretching, twisting or compressing or any combination of these." (Lokenath Debnath, "The Legacy of Leonhard Euler - A Tricentennial Tribute", 2010)
"At first, topology can seem like an unusually imprecise branch of mathematics. It’s the study of squishy play-dough shapes capable of bending, stretching and compressing without limit. But topologists do have some restrictions: They cannot create or destroy holes within shapes. […] While this might seem like a far cry from the rigors of algebra, a powerful idea called homology helps mathematicians connect these two worlds. […] homology infers an object’s holes from its boundaries, a more precise mathematical concept. To study the holes in an object, mathematicians only need information about its boundaries." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021) [source]
"In geometry, shapes like circles and polyhedra are rigid objects; the tools of the trade are lengths, angles and areas. But in topology, shapes are flexible things, as if made from rubber. A topologist is free to stretch and twist a shape. Even cutting and gluing are allowed, as long as the cut is precisely reglued. A sphere and a cube are distinct geometric objects, but to a topologist, they’re indistinguishable." (David E Richeson, "Topology 101: The Hole Truth", 2021) [source]
No comments:
Post a Comment