The History of Statistics in Quotes:
“There are two aspects of statistics that are continually mixed, the method and the science. Statistics are used as a method, whenever we measure something, for example, the size of a district, the number of inhabitants of a country, the quantity or price of certain commodities, etc. […] There is, moreover, a science of statistics. It consists of knowing how to gather numbers, combine them and calculate them, in the best way to lead to certain results. But this is, strictly speaking, a branch of mathematics." (Alphonse P de Candolle, “Considerations on Crime Statistics”, 1833)
“Statistics has then for its object that of presenting a faithful representation of a state at a determined epoch.” (Adolphe Quetelet, 1849)
“[Statistics] are the only tools by which an opening can be cut through the formidable thicket of difficulties that bars the path of those who pursue the Science of man.” (Sir Francis Galton, “Natural Inheritance”, 1889)
“[…] statistics is the science of the measurement of the social organism, regarded as a whole, in all its manifestations.” (Sir Arthur L Bowley, “Elements of Statistics”, 1901)
"A knowledge of statistics is like a knowledge of foreign languages or of algebra; it may prove of use at any time under any circumstances." (Sir Arthur L Bowley, "Elements of Statistics", 1901)
"A statistical estimate may be good or bad, accurate or the reverse; but in almost all cases it is likely to be more accurate than a casual observer’s impression, and the nature of things can only be disproved by statistical methods." (Sir Arthur L Bowley, "Elements of Statistics", 1901)
"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)
“Statistics may rightly be called the science of averages. […] Great numbers and the averages resulting from them, such as we always obtain in measuring social phenomena, have great inertia. […] It is this constancy of great numbers that makes statistical measurement possible. It is to great numbers that statistical measurement chiefly applies.” (Sir Arthur L Bowley, “Elements of Statistics”, 1901)
“Statistics may, for instance, be called the science of counting. Counting appears at first sight to be a very simple operation, which any one can perform or which can be done automatically; but, as a matter of fact, when we come to large numbers, e.g., the population of the United Kingdom, counting is by no means easy, or within the power of an individual; limits of time and place alone prevent it being so carried out, and in no way can absolute accuracy be obtained when the numbers surpass certain limits.” (Sir Arthur L Bowley, “Elements of Statistics”, 1901)
"Figures may not lie, but statistics compiled unscientifically and analyzed incompetently are almost sure to be misleading, and when this condition is unnecessarily chronic the so-called statisticians may be called liars." (Edwin B Wilson, "Bulletin of the American Mathematical Society", Vol 18, 1912)
"No matter how solidly founded a prediction may appear to us, we are never absolutely sure that experiment will not contradict it, if we undertake to verify it . […] It is far better to foresee even without certainty than not to foresee at all." (Henri Poincaré, "The Foundations of Science", 1913)
“Statistics may be defined as numerical statements of facts by means of which large aggregates are analyzed, the relations of individual units to their groups are ascertained, comparisons are made between groups, and continuous records are maintained for comparative purposes.” (Melvin T Copeland. “Statistical Methods” [in: Harvard Business Studies, Vol. III, Ed. by Melvin T Copeland, 1917])
“Statistics may be regarded as (i) the study of populations, (ii) as the study of variation, and (iii) as the study of methods of the reduction of data.” (Sir Ronald A Fisher, “Statistical Methods for Research Worker”, 1925)
"[…] the statistical prediction of the future from the past cannot be generally valid, because whatever is future to any given past, is in tum past for some future. That is, whoever continually revises his judgment of the probability of a statistical generalization by its successively observed verifications and failures, cannot fail to make more successful predictions than if he should disregard the past in his anticipation of the future. This might be called the ‘Principle of statistical accumulation’." (Clarence I Lewis, "Mind and the World-Order: Outline of a Theory of Knowledge", 1929)
"Factual science may collect statistics, and make charts. But its predictions are, as has been well said, but past history reversed." (John Dewey, "Art as Experience", 1934)
“Statistics is a scientific discipline concerned with collection, analysis, and interpretation of data obtained from observation or experiment. The subject has a coherent structure based on the theory of Probability and includes many different procedures which contribute to research and development throughout the whole of Science and Technology.” (Egon Pearson, 1936)
"The fundamental gospel of statistics is to push back the domain of ignorance, prejudice, rule-of-thumb, arbitrary or premature decisions, tradition, and dogmatism and to increase the domain in which decisions are made and principles are formulated on the basis of analyzed quantitative facts." (Robert W Burgess, "The Whole Duty of the Statistical Forecaster", Journal of the American Statistical Association , Vol. 32, No. 200, 1937)
"Starting from statistical observations, it is possible to arrive at conclusions which not less reliable or useful than those obtained in any other exact science. It is only necessary to apply a clear and precise concept of probability to such observations. " (Richard von Mises, "Probability, Statistics, and Truth", 1939)
“[Statistics] is both a science and an art. It is a science in that its methods are basically systematic and have general application; and an art in that their successful application depends to a considerable degree on the skill and special experience of the statistician, and on his knowledge of the field of application, e.g. economics.” (Leonard H C Tippett, “Statistics”, 1943)
"Statistics is the branch of scientific method which deals with the data obtained by counting or measuring the properties of populations of natural phenomena. In this definition 'natural phenomena' includes all the happenings of the external world, whether human or not " (Sir Maurice G Kendall, “Advanced Theory of Statistics”, Vol. 1, 1943)
“To some people, statistics is ‘quartered pies, cute little battleships and tapering rows of sturdy soldiers in diversified uniforms’. To others, it is columns and columns of numerical facts. Many regard it as a branch of economics. The beginning student of the subject considers it to be largely mathematics.” (The Editors, “Statistics, The Physical Sciences and Engineering”, The American Statistician, Vol. 2, No. 4, 1948) [Link]
"A random sequence is a vague notion embodying the idea of a sequence in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians and depending somewhat on the uses to which the sequence is to be put." (Derrick H Lehmer, 1951)
"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." (Samuel S. Wilks 1951)
"The enthusiastic use of statistics to prove one side of a case is not open to criticism providing the work is honestly and accurately done, and providing the conclusions are not broader than indicated by the data. This type of work must not be confused with the unfair and dishonest use of both accurate and inaccurate data, which too commonly occurs in business. Dishonest statistical work usually takes the form of: (1) deliberate misinterpretation of data; (2) intentional making of overestimates or underestimates; and (3) biasing results by using partial data, making biased surveys, or using wrong statistical methods." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1951)
"To say that observations of the past are certain, whereas predictions are merely probable, is not the ultimate answer to the question of induction; it is only a sort of intermediate answer, which is incomplete unless a theory of probability is developed that explains what we should mean by ‘probable’ and on what ground we can assert probabilities." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)
“Statistics is the name for that science and art which deals with uncertain inferences - which uses numbers to find out something about nature and experience.” (Warren Weaver, 1952)
“Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method.” (Bruce D Greenschieldsw & Frank M Weida, “Statistics with Applications to Highway Traffic Analyses”, 1952)
"It is never possible to predict a physical occurrence with unlimited precision." (Max Planck, "The Meaning of Causality in Physics", 1953)
"The statistics themselves prove nothing; nor are they at any time a substitute for logical thinking. There are […] many simple but not always obvious snags in the data to contend with. Variations in even the simplest of figures may conceal a compound of influences which have to be taken into account before any conclusions are drawn from the data." (Alfred R Ilersic, "Statistics", 1959)
"Can there be laws of chance? The answer, it would seem should be negative, since chance is in fact defined as the characteristic of the phenomena which follow no law, phenomena whose causes are too complex to permit prediction." (Félix E Borel, "Probabilities and Life", 1962)
[Statistics] is concerned with things we can count. In so far as things, persons, are unique or ill-defi ned, statistics are meaningless and statisticians silenced; in so far as things are similar and definite - so many workers over 25, so many nuts and bolts made during December - they can be counted and new statistical facts are born.” (Maurice S Bartlett, “Essays on Probability and Statistics”, 1962)
"All predictions are statistical, but some predictions have such a high probability that one tends to regard them as certain." (Marshall J Walker, "The Nature of Scientific Thought", 1963)
"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation." (Marshall J Walker, "The Nature of Scientific Thought", 1963)
“Statistics is the branch of scientific method which deals with the data obtained by counting or measuring the properties of populations of natural phenomena.” (Sir Maurice G Kendall & Alan Stuart, “The Advanced Theory of Statistics”, 1963)
"[…] in the statistical world you can multiply ignorance by a constant and get truth." (Raymond F Jones, "The Non-Statistical Man", 1964)
"[…] statistical techniques are tools of thought, and not substitutes for thought." (Abraham Kaplan, "The Conduct of Inquiry", 1964)
“Statistics may be defined as the discipline concerned with the treatment of numerical data derived from groups of individuals.” (Peter Armitage, “Statistical Methods in Medical Research”, 1971)
"Everything we think we know about the world is a model. Every word and every language is a model. All maps and statistics, books and databases, equations and computer programs are models. So are the ways I picture the world in my head - my mental models. None of these is or ever will be the real world. […] Our models usually have a strong congruence with the world. That is why we are such a successful species in the biosphere. Especially complex and sophisticated are the mental models we develop from direct, intimate experience of nature, people, and organizations immediately around us." (Donella Meadows, "Limits to Growth", 1972)
"The manipulation of statistical formulas is no substitute for knowing what one is doing." (Hubert M Blalock Jr., "Social Statistics" 2nd Ed., 1972)
"Statistics is the refuge of the uninformed." (Audrey Haber & Richard P Runyon, "General Statistics", 1973)
"Confidence in the omnicompetence of statistical reasoning grows by what it feeds on." (Harry Hopkins, "The Numbers Game: The Bland Totalitarianism", 1973)
"When we can’t prove our point through the use of sound reasoning, we fall back upon statistical ‘mumbo jumbo’ to confuse and demoralize our opponents. (Audrey Haber & Richard P. Runyon, "General Statistics", 1973)
"No matter how much reverence is paid to anything purporting to be ‘statistics’, the term has no meaning unless the source, relevance, and truth are all checked." (Tom Burnam, "The Dictionary of Misinformation", 1975)
"The moment you forecast you know you’re going to be wrong, you just don’t know when and in which direction." (Edgar R Fiedler, "Across the Board", 1977)
“We provisionally define statistics as the study of how information should be employed to reflect on, and give guidance for action in, a practical situation involving uncertainty.” (Vic Barnett, “Comparative Statistical Inference” 2nd Ed., 1982)
"It is all too easy to notice the statistical sea that supports our thoughts and actions. If that sea loses its buoyancy, it may take a long time to regain the lost support." (William Kruskal, "Coordination Today: A Disaster or a Disgrace", The American Statistician, Vol. 37, No. 3, 1983)
"’Common sense’ is not common but needs to [be] learnt systematically […]. A ‘simple analysis’ can be harder than it looks […]. All statistical techniques, however sophisticated, should be subordinate to subjective judgment." (Christopher Chatfield, "The Initial Examination of Data", Journal of The Royal Statistical Society, Series A, Vol. 148, 1985)
"[In statistics] you have the fact that the concepts are not very clean. The idea of probability, of randomness, is not a clean mathematical idea. You cannot produce random numbers mathematically. They can only be produced by things like tossing dice or spinning a roulette wheel. With a formula, any formula, the number you get would be predictable and therefore not random. So as a statistician you have to rely on some conception of a world where things happen in some way at random, a conception which mathematicians don’t have." (Lucien LeCam, [interview] 1988)
“Statistics is a tool. In experimental science you plan and carry out experiments, and then analyse and interpret the results. To do this you use statistical arguments and calculations. Like any other tool - an oscilloscope, for example, or a spectrometer, or even a humble spanner - you can use it delicately or clumsily, skillfully or ineptly. The more you know about it and understand how it works, the better you will be able to use it and the more useful it will be.” (Roger Barlow, “Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences”, 1989)
"Statistics as a science is to quantify uncertainty, not unknown." (Chamont Wang, "Sense and Nonsense of Statistical Inference: Controversy, Misuse, and Subtlety", 1993)
"Statistics at its best provides methodology for dealing empirically with complicated and uncertain information, in a way that is both useful and scientifically valid" (John M Chambers, 1993)
"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)
“The science of statistics may be described as exploring, analyzing and summarizing data; designing or choosing appropriate ways of collecting data and extracting information from them; and communicating that information. Statistics also involves constructing and testing models for describing chance phenomena. These models can be used as a basis for making inferences and drawing conclusions and, finally, perhaps for making decisions.” (Fergus Daly et al, “Elements of Statistics”, 1995)
“Statistics is a general intellectual method that applies wherever data, variation, and chance appear. It is a fundamental method because data, variation and chance are omnipresent in modern life. It is an independent discipline with its own core ideas rather than, for example, a branch of mathematics. […] Statistics offers general, fundamental, and independent ways of thinking.” (David S Moore, “Statistics among the Liberal Arts”, Journal of the American Statistical Association, 1998)
"We use mathematics and statistics to describe the diverse realms of randomness. From these descriptions, we attempt to glean insights into the workings of chance and to search for hidden causes. With such tools in hand, we seek patterns and relationships and propose predictions that help us make sense of the world." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)
“Statistics is the branch of mathematics that uses observations and measurements called data to analyze, summarize, make inferences, and draw conclusions based on the data gathered.” (Allan G Bluman, “Probability Demystified”, 2005)
“Put simply, statistics is a range of procedures for gathering, organizing, analyzing and presenting quantitative data. […] Essentially […], statistics is a scientific approach to analyzing numerical data in order to enable us to maximize our interpretation, understanding and use. This means that statistics helps us turn data into information; that is, data that have been interpreted, understood and are useful to the recipient. Put formally, for your project, statistics is the systematic collection and analysis of numerical data, in order to investigate or discover relationships among phenomena so as to explain, predict and control their occurrence.” (Reva B Brown & Mark Saunders, “Dealing with Statistics: What You Need to Know”, 2008)
“Statistics is the art of learning from data. It is concerned with the collection of data, their subsequent description, and their analysis, which often leads to the drawing of conclusions.” (Sheldon M Ross, “Introductory Statistics” 3rd Ed., 2009)
“Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.” (Ron Larson & Betsy Farber, “Elementary Statistics: Picturing the World” 5th Ed., 2011)
“Statistics is the discipline of using data samples to support claims about populations.” (Allen B Downey, “Think Stats: Probability and Statistics for Programmers”, 2011)
“Statistics is the scientific discipline that provides methods to help us make sense of data. […] The field of statistics teaches us how to make intelligent judgments and informed decisions in the presence of uncertainty and variation.” (Roxy Peck & Jay L Devore, “Statistics: The Exploration and Analysis of Data” 7th Ed, 2012)
“[…] statistics is a method of pursuing truth. At a minimum, statistics can tell you the likelihood that your hunch is true in this time and place and with these sorts of people. This type of pursuit of truth, especially in the form of an event’s future likelihood, is the essence of psychology, of science, and of human evolution.” (Arthhur Aron et al, "Statistics for Phsychology" 6th Ed., 2012)
“Statistics is the art and science of designing studies and analyzing the data that those studies produce. Its ultimate goal is translating data into knowledge and understanding of the world around us. In short, statistics is the art and science of learning from data.” (Alan Agresti & Christine Franklin, “Statistics: The Art and Science of Learning from Data” 3rd Ed., 2013)
"In general, when building statistical models, we must not forget that the aim is to understand something about the real world. Or predict, choose an action, make a decision, summarize evidence, and so on, but always about the real world, not an abstract mathematical world: our models are not the reality - a point well made by George Box in his oft-cited remark that "all models are wrong, but some are useful". (David Hand, "Wonderful examples, but let's not close our eyes", Statistical Science 29, 2014)
“Statistics is a science that helps us make decisions and draw conclusions in the presence of variability.” (Douglas C Montgomery & George C Runger, “Applied Statistics and Probability for Engineers” 6th Ed., 2014)
"Even properly done statistics can’t be trusted. The plethora of available statistical techniques and analyses grants researchers an enormous amount of freedom when analyzing their data, and it is trivially easy to ‘torture the data until it confesses’." (Alex Reinhart, "Statistics Done Wrong: The Woefully Complete Guide", 2015)
“Statistics is an integral part of the quantitative approach to knowledge. The field of statistics is concerned with the scientific study of collecting, organizing, analyzing, and drawing conclusions from data.” (Kandethody M Ramachandran & Chris P Tsokos, “Mathematical Statistics with Applications in R” 2nd Ed., 2015)
“Statistics can be defined as a collection of techniques used when planning a data collection, and when subsequently analyzing and presenting data.” (Birger S Madsen, “Statistics for Non-Statisticians”, 2016)
“Statistics is the science of collecting, organizing, and interpreting numerical facts, which we call data. […] Statistics is the science of learning from data.” (Moore McCabe & Alwan Craig, “The Practice of Statistics for Business and Economics” 4th Ed., 2016)
“Statistics is the science of collecting, organizing, summarizing, and analyzing information to draw conclusions or answer questions. In addition, statistics is about providing a measure of confidence in any conclusions.” (Michael Sullivan, “Statistics: Informed Decisions Using Data”, 5th Ed., 2017)
No comments:
Post a Comment