12 October 2019

James Gleick - Collected Quotes

"Physicists' models are like maps: never final, never complete until they grow as large and complex as the reality they represent." (James Gleick, "Genius: The Life and Science of Richard Feynman, Epilogue", 1992)

"Quantum mechanics taught that a particle was not a particle but a smudge, a traveling cloud of possibilities […]" (James Gleick, "Genius: The Life and Science of Richard Feynman, Epilogue", 1992)

"A branch of physics, once it becomes obsolete or unproductive, tends to be forever part of the past. It may be a historical curiosity, perhaps the source of some inspiration to a modern scientist, but dead physics is usually dead for good reason. Mathematics, by contrast, is full of channels and byways that seem to lead nowhere in one era and become major areas of study in another." (James Gleick, "Chaos: Making a New Science", 1987)

"Given an approximate knowledge of a system's initial conditions and an understanding of natural law, one can calculate the approximate behavior of the system. This assumption lay at the philosophical heart of science [...]" (James Gleick, "Chaos: Making a New Science", 1987)

"Ideas that require people to reorganize their picture of the world provoke hostility." (James Gleick, "Chaos: Making a New Science", 1987)

"In the mind's eye, a fractal is a way of seeing infinity." (James Gleick, "Chaos: Making a New Science", 1987)

"Linear relationships are easy to think about: the more the merrier. Linear equations are solvable, which makes them suitable for textbooks. Linear systems have an important modular virtue: you can take them apart and put them together again -  the pieces add up. Nonlinear systems generally cannot be solved and cannot be added together. [...] Nonlinearity means that the act of playing the game has a way of changing the rules. [...] That twisted changeability makes nonlinearity hard to calculate, but it also creates rich kinds of behavior that never occur in linear systems." (James Gleick, "Chaos: Making a New Science", 1987)

"Linking topology and dynamical systems is the possibility of using a shape to help visualize the whole range of behaviors of a system. For a simple system, the shape might be some kind of curved surface; for a complicated system, a manifold of many dimensions. A single point on such a surface represents the state of a system at an instant frozen in time. As a system progresses through time, the point moves, tracing an orbit across this surface. Bending the shape a little corresponds to changing the system's parameters, making a fluid more visous or driving a pendulum a little harder. Shapes that look roughly the same give roughly the same kinds of behavior. If you can visualize the shape, you can understand the system." (James Gleick, "Chaos: Making a New Science", 1987)

"To some physicists chaos is a science of process rather than state, of becoming rather than being." (James Gleick, "Chaos: Making a New Science", 1987)

"Where chaos begins, classical science stops. For as long as the world has had physicists inquiring into the laws of nature, it has suffered a special ignorance about disorder in the atmosphere, in the fluctuations of the wildlife populations, in the oscillations of the heart and the brain. The irregular side of nature, the discontinuous and erratic side these have been puzzles to science, or worse, monstrosities." (James Gleick, "Chaos: Making a New Science", 1987)

"Randomness might be defined in terms of order - its absence, that is. […] Everything we care about lies somewhere in the middle, where pattern and randomness interlace." (James Gleick, "The Information: A History, a Theory, a Flood", 2011)

"The history of life is written in terms of negative entropy." (James Gleick, "The Information: A History, a Theory, a Flood", 2011)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...