"A proof in mathematics is a compelling argument that a proposition holds without exception; a disproof requires only the demonstration of an exception. A mathematical proof does not, in general, establish the empirical truth of whatever is proved. What it establishes is that whatever is proved - usually a theorem - follows logically from the givens, or axioms." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures and Proofs", 2009)
"As well as regarding mathematics as the study of patterns, mathematics can be viewed, pragmatically, as a vast collection of problems of certain types and of approaches that have proved to be effective in solving them." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)
"How are we to explain the contrast between the matter-of-fact way in which √-1 and other imaginary numbers are accepted today and the great difficulty they posed for learned mathematicians when they first appeared on the scene? One possibility is that mathematical intuitions have evolved over the centuries and people are generally more willing to see mathematics as a matter of manipulating symbols according to rules and are less insistent on interpreting all symbols as representative of one or another aspect of physical reality. Another, less self-congratulatory possibility is that most of us are content to follow the computational rules we are taught and do not give a lot of thought to rationales." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)
"Philosophers have sometimes made a distinction between analytic and synthetic truths. Analytic truths are not verified by observation; true analytic statements are tautologies and are true by virtue of the definitions of their terms and their logical structure. Synthetic truths relate to the material world; the truth of synthetic statements depends on their correspondence to how physical reality works. Mathematics, according to this distinction, deals exclusively with analytic truths. Its statements are all tautologies and are (analytically) true by virtue of their adherence to formal rules of construction." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)
"The characterization of mathematics as a deductive discipline is accurate but incomplete. It represents the finished and polished consequences of the work of mathematicians, but it does not adequately represent the doing of mathematics. It describes theorem proofs but not theorem proving. Moreover, the history of mathematics is not the emotionless chronology of inventions of evermore esoteric formalisms that some people imagine it to be. It has its full share of color, mystery, and intrigue." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)
"The reasoning of the mathematician and that of the scientist are similar to a point. Both make conjectures often prompted by particular observations. Both advance tentative generalizations and look for supporting evidence of their validity. Both consider specific implications of their generalizations and put those implications to the test. Both attempt to understand their generalizations in the sense of finding explanations for them in terms of concepts with which they are already familiar. Both notice fragmentary regularities and - through a process that may include false starts and blind alleys - attempt to put the scattered details together into what appears to be a meaningful whole. At some point, however, the mathematician’s quest and that of the scientist diverge. For scientists, observation is the highest authority, whereas what mathematicians seek ultimately for their conjectures is deductive proof." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures and Proofs", 2009)
"What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?" (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)
"Without denying the usefulness of the distinction between intuition and proof, I believe it can be drawn too sharply; intuition plays an essential role in the making and evaluating of proofs and is sometimes changed as a consequence of these processes. In this respect, the distinction is like that between creative and critical thinking; while this distinction too is a useful one, it is not possible to have either in any very satisfactory sense without the other." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)
Quotes and Resources Related to Mathematics, (Mathematical) Sciences and Mathematicians
Subscribe to:
Post Comments (Atom)
On Data: Longitudinal Data
"Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...
No comments:
Post a Comment