22 January 2021

On Physics (1920-1929)

"It is characteristic of modern physics to represent all processes in terms of mathematical equations. But the close connection between the two sciences must not blur their essential difference." (Hans Reichenbach, "The Theory of Relativity and A Priori Knowledge", 1920)

"The physical object cannot be determined by axioms and definitions. It is a thing of the real world, not an object of the logical world of mathematics. Offhand it looks as if the method of representing physical events by mathematical equations is the same as that of mathematics. Physics has developed the method of defining one magnitude in terms of others by relating them to more and more general magnitudes and by ultimately arriving at 'axioms', that is, the fundamental equations of physics. Yet what is obtained in this fashion is just a system of mathematical relations. What is lacking in such system is a statement regarding the significance of physics, the assertion that the system of equations is true for reality." (Hans Reichenbach, "The Theory of Relativity and A Priori Knowledge", 1920)

"[...] the future of thought and therefore of history lies in the hands of physicists, and therefore the future historian must seek his education in the world of mathematical physics." (Henry Adams, "The Degradation of the Democratic Dogma", 1920)

"The scene of action of reality is not a three-dimensional Euclidean space but rather a four-dimensional world, in which space and time are linked together indissolubly. However deep the chasm may be that separates the intuitive nature of space from that of time in our experience, nothing of this qualitative difference enters into the objective world which physics endeavors to crystallize out of direct experience. It is a four-dimensional continuum, which is neither 'time' nor 'space'. Only the consciousness that passes on in one portion of this world experiences the detached piece which comes to meet it and passes behind it as history, that is, as a process that is going forward in time and takes place in space." (Hermann Weyl, "Space, Time, Matter", 1922)

"And so in its actual procedure physics studies not these inscrutable qualities, but pointer-readings which we can observe, The readings, it is true, reflect the fluctuations of the world-qualities; but our exact knowledge is of the readings, not of the qualities. The former have as much resemblance to the latter as a telephone number has to a subscriber." (Arthur S Eddington, "The Domain of Physical Science", 1925)

"We wish to obtain a representation of phenomena and form an image of them in our minds. Till now, we have always attempted to form these images by means of the ordinary notions of time and space. These notions are perhaps innate; in any case they have been developed by our daily observations. For me, these notions are clear, and I confess that I am unable to gain any idea of physics without them. […] I would like to retain this ideal of other days and describe everything that occurs in this world in terms of clear pictures." (Hendrik A Lorentz, [Fifth Solvay Conference] 1927)

"It seems to be the impression among students that mathematical physics consists in deriving a large number of partial differential equations and then solving them, individually, by an assortment of special mutually unrelated devices. It has not been made clear that there is any underlying unity of method and one has often been left entirely in the dark as to what first suggested a particular device to the mind of its inventor." (Arthur G Webster, "Partial Differential Equations of Mathematical Physics", 1927)

"Physics has progressed because, in the first place, she accepted the uniformity of nature; because, in the next place, she early discovered the value of exact measurements; because, in the third place, she concentrated her attention on the regularities that underlie the complexities of phenomena as they appear to us; and lastly, and not the least significant, because she emphasized the importance of the experimental method of research. An ideal or crucial experiment is a study of an event, controlled so as to give a definite and measurable answer to a question - an answer in terms of specific theoretical ideas, or better still an answer in terms of better understood relations." (Thomas H Morgan, "The Relation of Biology to Physics", Science Vol. LXV (1679),  1927)

"Physics is mathematical not because we know so much about the physical world, but because we know so little: it is only its mathematical properties that we can discover." (Bertrand Russell, "An Outline of Philosophy", 1927)

"It is unreasonable to expect science to produce a system of ethics - ethics are a kind of highway code for traffic among mankind - and the fact that in physics atoms which were yesterday assumed to be square are now assumed to be round is exploited with unjustified tendentiousness by all who are hungry for faith; so long as physics extends our dominion over nature, these changes ought to be a matter of complete indifference to you." (Sigmund Freud, [Letter to Oskar Pfister] 1928)

"So far as physics is concerned, time's arrow is a property of entropy alone." (Arthur S Eddington, "The Nature of the Physical World", 1928)

"If to-day you ask a physicist what he has finally made out the æther or the electron to be, the answer will not be a description in terms of billiard balls or fly-wheels or anything concrete; he will point instead to a number of symbols and a set of mathematical equations which they satisfy. What do the symbols stand for? The mysterious reply is given that physics is indifferent to that; it has no means of probing beneath the symbolism. To understand the phenomena of the physical world it is necessary to know the equations which the symbols obey but not the nature of that which is being symbolised [...]" (Arthur S Eddington, "Science and the Unseen World", 1929)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...