Logic

"Among all the liberal arts, the first is logic, and specifically that part of logic which gives initial instruction about words. [...] the word 'logic' has a broad meaning, and is not restricted exclusively to the science of argumentative reasoning. [It includes] Grammar [which] is 'the science of speaking and writing correctly - the starting point of all liberal studies'." (John of Salisbury, "Metalogicon", 1159)

"Among the various branches of philosophy, logic has two prerogatives: it has both the honor of coming first and the distinction of serving as an efficacious instrument throughout the whole body [of philosophy]. Natural and moral philosophers can construct their principles only by the forms of proof supplied by logicians. Also, in order to define and divide correctly, they must borrow and employ the art of the logicians. And if, perchance, they succeed in this without logic, their success is due to luck, rather than to science. Logic is 'rational' [philosophy], and we may readily see from the very name, what progress in philosophy can be expected from one who [since he lacks logic] lacks reason." (John of Salisbury, "Metalogicon", 1159)

"[…] he who wishes to attain to human perfection, must therefore first study Logic, next the various branches of Mathematics in their proper order, then Physics, and lastly Metaphysics." (Moses Maimonides, "The Guide for the Perplexed", 1190)

"Men are further beholding […] generally to chance, or anything else, than to logic, for the invention or arts and sciences." (Francis Bacon, "The Advancement of Learning", 1605)

"As the present sciences are useless for the discovery of effects, so the present system of logic is useless for the discovery of the sciences. XII. The present system of logic rather assists in confirming and rendering inveterate the errors founded on vulgar notions than in searching after truth, and is therefore more hurtful than useful."  (Sir Francis Bacon, "Novum Organum", 1620)

"In logic, they teach that contraries laid together more evidently appear: it follows, then, that all controversy being permitted, falsehood will appear more false, and truth the more true; which must needs conduce much to the general confirmation of an implicit truth." (John Milton, "True Religion, Heresy, Schism, Toleration, and what best means may be used against the Growth of Popery", 1673)

"The advantages which mathematics derives from the peculiar nature of those relations about which it is conversant, from its simple and definite phraseology, and from the severe logic so admirably displayed in the concatenation of its innumerable theorems, are indeed immense, and well entitled to separate and ample illustration." (Dugald Stewart, "Philosophy of the Human Mind", 1792)

"Logic and metaphysics make use of more tools than all the rest of the sciences put together, and do the least work." (Charles C Colton, "Remarks on the Talents of Lord Byron and the Tendencies of Don Juan" 1823)

"Every syllogism, then, consists of three propositions; the two first of which are called the premises and the third the conclusion. Now, the advantage of the all these [valid] forms to direct our reasoning is this, that if the premises are both true, the conclusion infallibly is so.
This is likewise the only method of discovering unknown truths. Every truth must always be the conclusion of a syllogism, whose premises are indubitably true." (Leonhard Euler, "Letters of Euler on Different Subjects in Natural Philosophy Addressed to a German Princess" Vol. 1, 1833)

"Logic is the procession or proportionate unfolding of the intuition; but its virtue is as silent method; the moment it would appear as propositions, and have a separate value, it is worthless." (Ralph W Emerson, "Essays", 1841)

"Logic does not pretend to teach the surgeon what are the symptoms which indicate a violent death. This he must learn from his own experience and observation, or from that of others, his predecessors in his peculiar science. But logic sits in judgment on the sufficiency of that observation and experience to justify his rules, and on the sufficiency of his rules to justify his conduct. It does not give him proofs, but teaches him what makes them proofs, and how he is to judge of them." (John Stuart Mill, "A System of Logic, Ratiocinative and Inductive: Being a Connected View of the Principles of Evidence, and the Methods of Scientific Investigation", 1843)

"The actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore, the true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind." (James C Maxwell, 1850)

"The purely formal sciences, logic and mathematics, deal with such relations which are independent of the definite content, or the substance of the objects, or at least can be. In particular, mathematics involves those relations of objects to each other that involve the concept of size, measure, number." (Hermann Hankel, "Theorie der Complexen Zahlensysteme", 1867)

"I think it would be desirable that this form of word [mathematics] should be reserved for the applications of the science, and that we should use mathematic in the singular to denote the science itself, in the same way as we speak of logic, rhetoric, or (own sister to algebra) music." (James J Sylvester, [Presidential Address to the British Association] 1869)

"The rules of Arithmetic operate in Algebra; the logical operations supposed to be peculiar to Ideation operate in Sensation, There is but one Calculus, but one Logic; though for convenience we divide the one into Arithmetic the calculus of values, and Algebra the calculus of relations; the other into the Logic of Feeling and the Logic of Signs." (George H Lewes "Problems of Life and Mind", 1873)

"[…] it must be noticed that these diagrams do not naturally harmonize with the propositions of ordinary life or ordinary logic. […] The great bulk of the propositions which we commonly meet with are founded, and rightly founded, on an imperfect knowledge of the actual mutual relations of the implied classes to one another. […] one very marked characteristic about these circular diagrams is that they forbid the natural expression of such uncertainty, and are therefore only directly applicable to a very small number of such propositions as we commonly meet with." (John Venn, "On the Diagrammatic and Mechanical Representation of Propositions and Reasonings", 1880)

"We need a system of symbols from which every ambiguity is banned, which has a strict logical form from which the content cannot escape." (Gottlob Frege, "Über die wissenschaftliche berechtigung einer begriffsschrift", Zeitschrift für Philosophie und philosophische Kritik 81, 1882)

"Logic works, metaphysics contemplates." (Joseph Joubert, "The Notebooks of Joseph Joubert", 1883)

"In calling arithmetic (algebra, analysis) just a part of logic, I declare already that I take the number-concept to be completely independent of the ideas or intuitions of space and time, that I see it as an immediate product of the pure laws of thought." (Richard Dedekind, "Was sind und was sollen die Zahlen?", 1888)

" […] the naive intuition is not exact, while the refined intuition is not properly intuition at all, but arises through the logical development from axioms considered as perfectly exact." (Felix Klein, [lectures] 1893)

"At the basis of our Symbolic Logic, however represented, whether by words by letters or by diagrams, we shall always find the same state of things. What we ultimately have to do is to break up the entire field before us into a definite number of classes or compartments which are mutually exclusive and collectively exhaustive." (John Venn, "Symbolic Logic" 2nd Ed., 1894)

"In mathematics we see the conscious logical activity of our mind in its purest and most perfect form; here is made manifest to us all the labor and the great care with which it progresses, the precision which is necessary to determine exactly the source of the established general theorems, and the difficulty with which we form and comprehend abstract conceptions; but we also learn here to have confidence in the certainty, breadth, and fruitfulness of such intellectual labor." (Hermann von Helmholtz, "Vorträge und Reden", 1896)

"The ordinary logic has a great deal to say about genera and species, or in our nineteenth century dialect, about classes. Now a class is a set of objects compromising all that stand to one another in a special relation of similarity. But where ordinary logic talks of classes the logic of relatives talks of systems. A system is a set of objects compromising all that stands to one another in a group of connected relations. Induction according to ordinary logic rises from the contemplation of a sample of a class to that of a whole class; but according to the logic of relatives it rises from the contemplation of a fragment of a system to the envisagement of the complete system." (Charles S Peirce, "Cambridge Lectures on Reasoning and the Logic of Things: Detached Ideas on Vitally Important Topics", 1898)

"The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our age; and when this fact has been established, the remainder of the principles of mathematics consists in the analysis of Symbolic Logic itself." (Bertrand Russell, "Principles of Mathematics", 1903)

"We believe that in our reasonings we no longer appeal to intuition; the philosophers will tell us this is an illusion. Pure logic could never lead us to anything but tautologies; it could create nothing new; not from it alone can any science issue. In one sense these philosophers are right; to make arithmetic, as to make geometry, or to make any science, something else than pure logic is necessary. To designate this something else we have no word other than intuition. But how many different ideas are hidden under this same word?" (Henri Poincaré , "Intuition and Logic in Mathematics", 1905)

"Logic, then, is not necessarily an instrument for finding truth; on the contrary, truth is necessarily an instrument for using logic - for using it, that is, for the discovery of further truth and for the profit of humanity. Briefly, you can only find truth with logic if you have already found truth without it." (Gilbert K Chesterton, Daily News, 1905)

"Diagrammatic reasoning is the only really fertile reasoning. If logicians would only embrace this method, we should no longer see attempts to base their science on the fragile foundations of metaphysics or a psychology not based on logical theory; and there would soon be such an advance in logic that every science would feel the benefit of it." (Charles S Peirce, "Prolegomena to an Apology for Pragmaticism", Monist 16(4), 1906)

"It is by logic that we prove, but by intuition that we discover. [...] Every definition implies an axiom, since it asserts the existence of the object defined. The definition then will not be justified, from the purely logical point of view, until we have proved that it involves no contradiction either in its terms or with the truths previously admitted." (Henri Poincaré, "Science and Method", 1908)

"Symbolic Logic is Mathematics, Mathematics is Symbolic Logic, the twain are one." (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1908)

"No system would have ever been framed if people had been simply interested in knowing what is true, whatever it may be. What produces systems is the interest in maintaining against all comers that some favourite or inherited idea of ours is sufficient and right. A system may contain an account of many things which, in detail, are true enough; but as a system, covering infinite possibilities that neither our experience nor our logic can prejudge, it must be a work of imagination and a piece of human soliloquy: It may be expressive of human experience, it may be poetical; but how should anyone who really coveted truth suppose that it was true?" (George Santayana, "The Genteel Tradition in American Philosophy", 1911)

"Neither logic without observation, nor observation without logic, can move one step in the formation of science." (Alfred N Whitehead, "The Organization of Thought", 1916)

"The logic of things, i.e., of the material concepts and relations on which the structure of a science rests, cannot be separated by the logic of signs. For the sign is no mere accidental cloak of the idea, but its necessary and essential organ. It serves not merely to communicate a complete and given thought content, but is an instrument, by means of which this content develops and fully defines itself. […] Consequently, all truly strict and exact thought is sustained by the symbolic and semiotics on which it is based." (Ernst Cassirer, "The Philosophy of Symbolic Forms", 1923)

"All traditional logic habitually assumes that precise symbols are being employed. It is therefore not applicable to this terrestrial life but only to an imagined celestial existence." (Bertrand Russell, 1923)

"[…] mathematics, accessible in its full depth only to the very few, holds a quite peculiar position amongst the creation of the mind. It is a science of the most rigorous kind, like logic but more comprehensive and very much fuller; it is a true art, along with sculpture and music, as needing the guidance of inspiration and as developing under great conventions of form […]" (Oswald Spengler, "The Decline of the West" Vol. 1, 1926)

"I have now come to believe that the order of words in time or space is an ineradicable part of much of their significance – in fact, that the reason they can express space-time occurrences is that they are space-time occurrences, so that a logic independent of the accidental nature of spacetime becomes an idle dream. These conclusions are unpleasant to my vanity, but pleasant to my love of philosophical activity: until vitality fails, there is no reason to be wedded to one's past theories." (Bertrand Russell," Review of The Meaning of Meaning", 1926)

"Metaphysics may be, after all, only the art of being sure of something that is not so and logic only the art of going wrong with confidence." (Joseph W Krutch, "The Modern Temper", 1929)

"The art of discovery is confused with the logic of proof and an artificial simplification of the deeper movements of thought results. We forget that we invent by intuition though we prove by logic." (Sarvepalli Radhakrishnan, "An Idealist View of Life", 1929)

"Most mistakes in philosophy and logic occur because the human mind is apt to take the symbol for the reality." (Albert Einstein, "Cosmic Religion: With Other Opinions and Aphorisms", 1931)

"There is no such thing as a logical method of having new ideas or a logical reconstruction of this process […] very discovery contains an ‘irrational element’ or a ‘creative intuition’." (Karl Popper, "The logic of scientific discover", 1934)

"What is the inner secret of mathematical power? Briefly stated, it is that mathematics discloses the skeletal outlines of all closely articulated relational systems. For this purpose mathematics uses the language of pure logic with its score or so of symbolic words, which, in its important forms of expression, enables the mind to comprehend systems of relations otherwise completely beyond its power. These forms are creative discoveries which, once made, remain permanently at our disposal. By means of them the scientific imagination is enabled to penetrate ever more deeply into the rationale of the universe about us." (George D Birkhoff, "Mathematics: Quantity and Order", 1934)

"But I shall certainly admit a system as empirical or scientific only if it is capable of being tested by experience. These considerations suggest that not the verifiability but the falsifiability of a system is to be taken as a criterion of demarcation. In other words: I shall not require of a scientific system that it shall be capable of being singled out, once and for all, in a positive sense; but I shall require that its logical form shall be such that it can be singled out, by means of empirical tests, in a negative sense: it must be possible for an empirical scientific system to be refuted by experience." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"Whenever we pride ourselves upon finding a newer, stricter way of thought or exposition; whenever we start insisting too hard upon 'operationalism' or symbolic logic or any other of these very essential systems of tramlines, we lose something of the ability to think new thoughts. And equally, of course, whenever we rebel against the sterile rigidity of formal thought and exposition and let our ideas run wild, we likewise lose. As I see it, the advances in scientific thought come from a combination of loose and strict thinking, and this combination is the most precious tool of science." (Gregory Bateson, "Culture Contact and Schismogenesis", 1935)

"Given any domain of thought in which the fundamental objective is a knowledge that transcends mere induction or mere empiricism, it seems quite inevitable that its processes should be made to conform closely to the pattern of a system free of ambiguous terms, symbols, operations, deductions; a system whose implications and assumptions are unique and consistent; a system whose logic confounds not the necessary with the sufficient where these are distinct; a system whose materials are abstract elements interpretable as reality or unreality in any forms whatsoever provided only that these forms mirror a thought that is pure. To such a system is universally given the name Mathematics." (Samuel T. Sanders, "Mathematics", National Mathematics Magazine, 1937)

"Mathematics as an expression of the human mind reflects the active will, the contemplative reason, and the desire for aesthetic perfection. Its basic elements are logic and intuition, analysis and construction, generality and individuality. Though different traditions may emphasize different aspects, it is only the interplay of these antithetic forces and the struggle for their synthesis that constitute the life, usefulness, and supreme value of mathematical science." (Richard Courant & Herbert Robbins, "What Is Mathematics?", 1941)

"To say that mathematics in general has been reduced to logic hints at some new firming up of mathematics at its foundations. This is misleading. Set theory is less settled and more conjectural than the classical mathematical superstructure than can be founded upon it." (Willard van Orman Quine, "Elementary Logic", 1941)

"The fact that the proof of a theorem consists in the application of certain simple rules of logic does not dispose of the creative element in mathematics, which lies in the choice of the possibilities to be examined." (Richard Courant & Herbert Robbins, "What Is Mathematics?: An Elementary Approach to Ideas and Methods", 1941)

"Geometry, then, is the application of strict logic to those properties of space and figure which are self-evident, and which therefore cannot be disputed. But the rigor of this science is carried one step further; for no property, however evident it may be, is allowed to pass without demonstration, if that can be given. The question is therefore to demonstrate all geometrical truths with the smallest possible number of assumptions." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1943)

"A mathematician is not a man who can readily manipulate figures; often he cannot. He is not even a man who can readily perform the transformations of equations by the use of calculus. He is primarily an individual who is skilled in the use of symbolic logic on a high plane, and especially he is a man of intuitive judgment in the choice of the manipulative processes he employs." (Vannevar Bush, "As We May Think", 1945)

"Any useful logic must concern itself with Ideas with a fringe of vagueness and a Truth that is a matter of degree." (Norbert Wiener, "Cybernetics", 1948)

"The act of discovery escapes logical analysis; there are no logical rules in terms of which a 'discovery machine' could be constructed that would take over the creative function of the genius. But it is not the logician’s task to account for scientific discoveries; all he can do is to analyze the relation between given facts and a theory presented to him with the claim that it explains these facts. In other words, logic is concerned with the context of justification." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"Mathematicians create by acts of insight and intuition. Logic then sanctions the conquests of intuition. It is the hygiene that mathematics practice to keep its ideas healthy and strong. Moreover, the whole structure rests fundamentally on uncertain ground, the intuitions of man." (Morris Kline, "Mathematics in Western Culture", 1953)

"Logic and truth are two very different things, but they often look the same to the mind that’s performing the logic. " (Theodore Sturgeon, "More Than Human", 1953)

"The creative act owes little to logic or reason. In their accounts of the circumstances under which big ideas occurred to them, mathematicians have often mentioned that the inspiration had no relation to the work they happened to be doing. Sometimes it came while they were traveling, shaving or thinking about other matters. The creative process cannot be summoned at will or even cajoled by sacrificial offering. Indeed, it seems to occur most readily when the mind is relaxed and the imagination roaming freely." (Morris Kline, Scientific American, 1955)

"The function of mathematical logic is to reveal and codify the logical processes employed in mathematical reasoning and to clarify the concepts of mathematics; it is itself a branch of mathematics, employing mathematical symbolism and technique, a branch which has developed in its entirety during the past hundred years and which in its vigor and fecundity and the power and importance of its discoveries may well claim to be in the forefront of modern mathematics." (Reuben L Goodstein, "Mathematical Logic", 1957)

"A logic machine is a device, electrical or mechanical, designed specifically for solving problems in formal logic. A logic diagram is a geometrical method for doing the same thing. […] A logic diagram is a two-dimensional geometric figure with spatial relations that are isomorphic with the structure of a logical statement. These spatial relations are usually of a topological character, which is not surprising in view of the fact that logic relations are the primitive relations underlying all deductive reasoning and topological properties are, in a sense, the most fundamental properties of spatial structures. Logic diagrams stand in the same relation to logical algebras as the graphs of curves stand in relation to their algebraic formulas; they are simply other ways of symbolizing the same basic structure." (Martin Gardner, "Logic Machines and Diagrams", 1958)

"It is sometimes said of two expositions of one and the same mathematical proof that the one is simpler or more elegant than the other. This is a distinction which has little interest from the point of view of the theory of knowledge; it does not fall within the province of logic, but merely indicates a preference of an aesthetic or pragmatic character." (Karl Popper, "The Logic of Scientific Discovery", 1959)

"Mathematics is neither a description of nature nor an explanation of its operation; it is not concerned with physical motion or with the metaphysical generation of quantities. It is merely the symbolic logic of possible relations, and as such is concerned with neither approximate nor absolute truth, but only with hypothetical truth. That is, mathematics determines what conclusions will follow logically from given premises. The conjunction of mathematics and philosophy, or of mathematics and science is frequently of great service in suggesting new problems and points of view." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"Mathematicians create by acts of insight and intuition. Logic then sanctions the conquests of intuition. It is the hygiene that mathematics practices to keep its ideas healthy and strong. Moreover, the whole structure rests fundamentally on uncertain ground, the intuition of humans. Here and there an intuition is scooped out and replaced by a firmly built pillar of thought; however, this pillar is based on some deeper, perhaps less clearly defined, intuition. Though the process of replacing intuitions with precise thoughts does not change the nature of the ground on which mathematics ultimately rests, it does add strength and height to the structure." (Morris Kline, "Mathematics in Western Culture ", 1964)

"A theorem is no more proved by logic and computation than a sonnet is written by grammar and rhetoric, or than a sonata is composed by harmony and counterpoint, or a picture painted by balance and perspective." (George Spencer-Brown, "Laws of Form", 1969)

"[Fuzzy logic is] a logic whose distinguishing features are (1) fuzzy truth-values expressed in linguistic terms, e. g., true, very true, more or less true, or somewhat true, false, nor very true and not very false, etc.; (2) imprecise truth tables; and (3) rules of inference whose validity is relative to a context rather than exact." (Lotfi A. Zadeh, "Fuzzy logic and approximate reasoning", 1975)

"An intuitive proof allows you to understand why the theorem must be true; the logic merely provides firm grounds to show that it is true." (Ian Stewart, "Concepts of Modern Mathematics", 1975)

"Facts do not ‘speak for themselves’; they are read in the light of theory. Creative thought, in science as much as in the arts, is the motor of changing opinion. Science is a quintessentially human activity, not a mechanized, robot-like accumulation of objective information, leading by laws of logic to inescapable interpretation." (Stephen J Gould, "Ever Since Darwin", 1977)

"All mathematical problems are solved by reasoning within a deductive system in which basic laws of logic are embedded." (Martin Gardner, "Aha! Insight", 1978)

„[...] despite an objectivity about mathematical results that has no parallel in the world of art, the motivation and standards of creative mathematics are more like those of art than of science. Aesthetic judgments transcend both logic and applicability in the ranking of mathematical theorems: beauty and elegance have more to do with the value of a mathematical idea than does either strict truth or possible utility." (Lynn A Steen, „Mathematics Today: Twelve Informal Essays", Mathematics Today, 1978)

"Science attempts to find logic and simplicity in nature. Mathematics attempts to establish order and simplicity in human thought." (Edward Teller, "The Pursuit of Simplicity", 1980)

"The advantage of semantic networks over standard logic is that some selected set of the possible inferences can be made in a specialized and efficient way. If these correspond to the inferences that people make naturally, then the system will be able to do a more natural sort of reasoning than can be easily achieved using formal logical deduction." (Avron Barr, Natural Language Understanding, AI Magazine Vol. 1 (1), 1980)

"A person who thinks by images becomes less and less capable of thinking by reasoning, and vice versa. The intellectual process based on images is contradictory to the intellectual process of reasoning that is related to the word. There are two different ways of dealing with an object. They involve not only different approaches, but even more important, opposing mental attitudes. This is not a matter of complementary processes, such as analysis and synthesis or logic and dialectic. These processes lack any qualitative common denominator." (Jacques Ellul, "The Humiliation of the Word", 1981)

"Moreover, ‘fact’ doesn’t mean ‘absolute certainty’; there ain’t no such animal in an exciting and complex world. The final proofs of logic and mathematics flow deductively from stated premises and achieve certainty only because they are NOT about the empirical world. Evolutionists make no claim for perpetual truth, though creationists often do (and then attack us falsely for a style of argument that they themselves favor)." (Stephen J Gould, "Evolution as Fact and Theory", Discover, 1981)

"Heavy dependence on direct observation is essential to biology not only because of the complexity of biological phenomena, but because of the intervention of natural selection with its criterion of adequacy rather than perfection. In a system shaped by natural selection it is inevitable that logic will lose its way." (George A Bartholomew, "Scientific innovation and creativity: a zoologist’s point of view", American Zoologist Vol. 22, 1982)

"The nothingness ‘before’ the creation of the universe is the most complete void that we can imagine - no space, time, or matter existed. It is a world without place, without duration or eternity, without number - it is what mathematicians call ‘the empty set’. Yet this unthinkable void converts itself into the plenum of existence - a necessary consequence of physical laws. Where are these laws written into that void? What ‘tells’ the void that is pregnant with a possible universe? It would seem that, even the void is subject to law, a logic that exists prior to space and time." (Heinz R Pagels, "Perfect Symmetry: The Search for the Beginning of Time", 1985)

"As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than observation as its standard of truth, yet employs observation, simulation, and even experimentation as a means of discovering truth. "(National Research Council, "Everybody Counts", 1989)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"This absolutist view of mathematical knowledge is based on two types of assumptions: those of mathematics, concerning the assumption of axioms and definitions, and those of logic concerning the assumption of axioms, rules of inference and the formal language and its syntax. These are local or micro-assumptions. There is also the possibility of global or macro-assumptions, such as whether logical deduction suffices to establish all mathematical truths." (Paul Ernest, "The Philosophy of Mathematics Education", 1991)

"The insight at the root of artificial intelligence was that these 'bits' (manipulated by computers) could just as well stand as symbols for concepts that the machine would combine by the strict rules of logic or the looser associations of psychology." (Daniel Crevier, "AI: The tumultuous history of the search for artificial intelligence", 1993)

"Mathematicians apparently don’t generally rely on the formal rules of deduction as they are thinking. Rather, they hold a fair bit of logical structure of a proof in their heads, breaking proofs into intermediate results so that they don’t have to hold too much logic at once. In fact, it is common for excellent mathematicians not even to know the standard formal usage of quantifiers (for all and there exists), yet all mathematicians certainly perform the reasoning that they encode." (William P Thurston, "On Proof and Progress in Mathematics", 1994)

"Music and higher mathematics share some obvious kinship. The practice of both requires a lengthy apprenticeship, talent, and no small amount of grace. Both seem to spring from some mysterious workings of the mind. Logic and system are essential for both, and yet each can reach a height of creativity beyond the merely mechanical." (Frederick Pratter, "How Music and Math Seek Truth in Beauty", Christian Science Monitor, 1995)

"An intuitive proof allows you to understand why the theorem must be true; the logic merely provides firm grounds to show that it is true." (Ian Stewart, "Concepts of Modern Mathematics",  1995)

"Networks constitute the new social morphology of our societies, and the diffusion of networking logic substantially modifies the operation and outcomes in processes of production, experience, power, and culture. While the networking form of social organization has existed in other times and spaces, the new information technology paradigm provides the material basis for its pervasive expansion throughout the entire social structure." (Manuel Castells, "The Rise of the Network Society", 1996)

"The logic of the emotional mind is associative; it takes elements that symbolize a reality, or trigger a memory of it, to be the same as that reality. That is why similes, metaphors and images speak directly to the emotional mind." (Daniel Goleman, "Emotional Intelligence", 1996)

"Mathematical logic deals not with the truth but only with the game of truth." (Gian-Carlo Rota, "Indiscrete Thoughts", 1997)

"Mathematics is not placid, static and eternal. […] Most mathematicians are happy to make use of those axioms in their proofs, although others do not, exploring instead so-called intuitionist logic or constructivist mathematics. Mathematics is not a single monolithic structure of absolute truth!" (Gregory J Chaitin, "A century of controversy over the foundations of mathematics", 2000)

"Zero is behind all of the big puzzles in physics. The infinite density of the black hole is a division by zero. The big bang creation from the void is a division by zero. The infinite energy of the vacuum is a division by zero. Yet dividing by zero destroys the fabric of mathematics and the framework of logic - and threatens to undermine the very basis of science. […] The universe begins and ends with zero." (Charles Seife ."Zero, the Biography of a Dangerous Idea", 2000)

"Classical logic, as common practice, deals with propositions (e.g., conclusions or decisions) that are either true or false. Each proposition has an opposite. This classical logic, therefore, deals with combinations of variables that represent propositions. As each variable stands for a hypothetical proposition, any combination of them eventually assumes a truth value (either true or false), but never is in between or both (i.e., is not true and false at the same time)." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"[…] interval mathematics and fuzzy logic together can provide a promising alternative to mathematical modeling for many physical systems that are too vague or too complicated to be described by simple and crisp mathematical formulas or equations. When interval mathematics and fuzzy logic are employed, the interval of confidence and the fuzzy membership functions are used as approximation measures, leading to the so-called fuzzy systems modeling." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"[…] we underestimate the share of randomness in about everything […]  The degree of resistance to randomness in one’s life is an abstract idea, part of its logic counterintuitive, and, to confuse matters, its realizations nonobservable." (Nassim N Taleb, "Fooled by Randomness", 2001)

"Pure mathematics was characterized by an obsession with proof, rigor, beauty, and elegance, and sought its foundations in the disembodied worlds of logic or intuition. Far from being coextensive with physics, pure mathematics could be ‘applied’ only after it had been made foundationally secure by the purists." (Andrew Warwick, "Masters of Theory: Cambridge and the rise of mathematical physics", 2003)

"Logic is the study of methods and principles of reasoning, where reasoning means obtaining new propositions from existing propositions. In classical logic, propositions are required to be either true or false; that is, the truth value of a proposition is either 0 or 1. Fuzzy logic generalizes classical two-value logic by allowing the truth values of a proposition to be any numbers in [0, 1]. This generalization allows us to perform fuzzy reasoning, also called approximate reasoning; that is, deducing imprecise conclusions (fuzzy propositions) from a collection of imprecise premises (fuzzy propositions). In this section, we first introduce some basic concepts and principles in classical logic and then study their generalizations to fuzzy logic." (Huaguang Zhang & Derong Liu, "Fuzzy Modeling and Fuzzy Control", 2006)

"Logic moves in one direction, the direction of clarity, coherence, and structure. Ambiguity moves in the other direction, that of fluidity, openness, and release. Mathematics moves back and forth between these two poles. Mathematics is not a fixed, static entity that can be structured definitively. It is dynamic, alive: its dynamism a function of the relationship between the two poles that have been described above. It is the interactions between these different aspects that give mathematics its power." (William Byers, "How Mathematicians Think", 2007)

"Therefore, mathematical ecology does not deal directly with natural objects. Instead, it deals with the mathematical objects and operations we offer as analogs of nature and natural processes. These mathematical models do not contain all information about nature that we may know, but only what we think are the most pertinent for the problem at hand. In mathematical modeling, we have abstracted nature into simpler form so that we have some chance of understanding it. Mathematical ecology helps us understand the logic of our thinking about nature to help us avoid making plausible arguments that may not be true or only true under certain restrictions. It helps us avoid wishful thinking about how we would like nature to be in favor of rigorous thinking about how nature might actually work." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"Fuzzy logic is an application area of fuzzy set theory dealing with uncertainty in reasoning. It utilizes concepts, principles, and methods developed within fuzzy set theory for formulating various forms of sound approximate reasoning. Fuzzy logic allows for set membership values to range (inclusively) between 0 and 1, and in its linguistic form, imprecise concepts like 'slightly', 'quite' and 'very'. Specifically, it allows partial membership in a set." (Larbi Esmahi et al,  Adaptive Neuro-Fuzzy Systems, 2009)

"[…] a conceptual model is a diagram connecting variables and constructs based on theory and logic that displays the hypotheses to be tested." (Mary Wolfinbarger Celsi et al, "Essentials of Business Research Methods", 2011)

"A proof in logic and mathematics is, traditionally, a deductive argument from some given assumptions to a conclusion. Proofs are meant to present conclusive evidence in the sense that the truth of the conclusion should follow necessarily from the truth of the assumptions. Proofs must be, in principle, communicable in every detail, so that their correctness can be checked." (Sara Negri  & Jan von Plato, "Proof Analysis", 2011)

"Like classical logic, fuzzy logic uses formulas to formally represent statements about the world. Given an appropriate semantic structure (such as an evaluation of propositional symbols in the case of propositional logic, or a relational structure in the case of predicate logic), a truth degree of formula ? is denoted by ||?||. It is significant that the truth degree ||?|| of ? may in general be any element of the set of truth degrees. That is, formulas in fuzzy logic are true to degrees , not just true or false as in the case of classical logic." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"Nevertheless, the use of fuzzy logic is supported by at least the following three arguments. First, fuzzy logic is rooted in the intuitively appealing idea that the truths of propositions used by humans are a matter of degree. An important consequence is that the basic principles and concepts of fuzzy logic are easily understood. Second, fuzzy logic has led to many successful applications, including many commercial products, in which the crucial part relies on representing and dealing with statements in natural language that involve vague terms. Third, fuzzy logic is a proper generalization of classical logic, follows an agenda similar to that of classical logic, and has already been highly developed. An important consequence is that fuzzy logic extends the rich realm of applications of classical logic to applications in which the bivalent character of classical logic is a limiting factor." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"We use the term fuzzy logic to refer to all aspects of representing and manipulating knowledge that employ intermediary truth-values. This general, commonsense meaning of the term fuzzy logic encompasses, in particular, fuzzy sets, fuzzy relations, and formal deductive systems that admit intermediary truth-values, as well as the various methods based on them." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"The principal idea employed by fuzzy logic is to allow for a partially ordered scale of truth-values, called also truth degrees, which contains the values representing false and true , but also some additional, intermediary truth degrees. That is, the set {0,1} of truth-values of classical logic, where 0 and 1 represent false and true , respectively, is replaced in fuzzy logic by a partially ordered scale of truth degrees with the smallest degree being 0 and the largest one being 1." (Radim Belohlavek & George J Klir, "Concepts and Fuzzy Logic", 2011)

"One of the most powerful transformational catalysts is knowledge, new information, or logic that defies old mental models and ways of thinking. […] The key to transforming mental models is to interrupt the automatic responses that are driven by the old model and respond differently based on the new model. Each time you are able to do this, you are actually loosening the old circuit and creating new neural connections in your brain, often referred to as self-directed neuroplasticity." (Elizabeth Thornton, "The Objective Leader", 2015)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...