27 October 2018

On History of Mathematics (1900-1949)

"The true method of foreseeing the future of mathematics is to study its history and its actual state." (Henri Poincaré, "Science and Method", 1908)

"If the question be raised, why such an apparently special problem, as that of the quadrature of the circle, is deserving of the sustained interest which has attached to it, and which it still possesses, the answer is only to be found in a scrutiny of the history of the problem, and especially in the closeness of the connection of that history with the general history of Mathematical Science. It would be difficult to select another special problem, an account of the history of which would afford so good an opportunity of obtaining a glimpse of so many of the main phases of the development of general Mathematics; and it is for that reason, even more than on account of the intrinsic interest of the problem, that I have selected it [...]" (Ernest W Hobson, "Squaring the Circle", 1913).

"The history of mathematics is the mirror of civilization." (Lancelot Hogben, "Mathematics for the Million", 1917)

"Every great epoch in the progress of science is preceded by a period of preparation and prevision. The invention of the differential and integral calculus is said to mark a 'crisis' in the history of mathematics. The conceptions brought into action at that great time had been long in preparation. The fluxional idea occurs among the schoolmen - among Galileo, Roberval, Napier, Barrow, and others. The differences or differentials of Leibniz are found in crude form among Cavalieri, Barrow, and others. The undeveloped notion of limits is contained in the ancient method of exhaustion; limits are found in the writings of Gregory St. Vincent and many others. The history of the conceptions which led up to the invention of the calculus is so extensive that a good-sized volume could be written thereon." (Florian Cajori, "A History of the Conceptions of Limits and Fluxions in Great Britain, from Newton to Woodhouse", [Introduction] 1919)

"[…] a history of mathematics is largely a history of discoveries which no longer exist as separate items, but are merged into some more modern generalization, these discoveries have not been forgotten or made valueless. They are not dead, but transmuted." (John W N Sullivan, "The History of Mathematics in Europe", 1925)

“Even now there is a very wavering grasp of the true position of mathematics as an element in the history of thought. I will not go so far as to say that to construct a history of thought without profound study of the mathematical ideas of successive epochs is like omitting Hamlet from the play which is named after him.” (Alfred N Whitehead, “Mathematics as an Element in the History of Thought” in “Science and the Modern World”, 1925)

 “This history constitutes a mirror of past and present conditions in mathematics which can be made to bear on the notational problems now confronting mathematics. The successes and failures of the past will contribute to a more speedy solution of notational problems of the present time.” (Florian Cajori, “A History of Mathematical Notations”, 1928)

"In the history of mathematics, the ‘how’ always preceded the ‘why’, the technique of the subject preceded its philosophy." (Tobias Dantzig, "Number: The Language of Science", 1930)

"The progress of mathematics has been most erratic, and [...] intuition has played a predominant role in it. [...] It was the function of intuition to create new forms; it was the acknowledged right of logic to accept or reject these new forms, in whose birth it had no part. [...] the children had to live, so while waiting for logic to sanctify their existence, they throve and multiplied." (Tobias Dantzig, "Number: The Language of Science", 1930)

“Mathematicians study their problems on account of their intrinsic interest, and develop their theories on account of their beauty. History shows that some of these mathematical theories which were developed without any chance of immediate use later on found very important applications.” (Karl Menger, “What is calculus of variations and what are its applications?”, The Scientific Monthly 45, 1937)

"It is a curious fact in the history of mathematics that discoveries of the greatest importance were made simultaneously by different men of genius. The classical example is the […] development of the infinitesimal calculus by Newton and Leibniz. Another case is the development of vector calculus in Grassmann's Ausdehnungslehre and Hamilton's Calculus of Quaternions. In the same way we find analytic geometry simultaneously developed by Fermat and Descartes." (Julian L Coolidge, "A History of Geometrical Methods", 1940)

“There are no absolutes [...] in mathematics or in its history.” (Eric T Bell, The Development of Mathematics, 1940)

“Unfortunately, the mechanical way in which calculus sometimes is taught fails to present the subject as the outcome of a dramatic intellectual struggle which has lasted for twenty-five hundred years or more, which is deeply rooted in many phases of human endeavors and which will continue as long as man strives to understand himself as well as nature. Teachers, students, and scholars who really want to comprehend the forces and appearances of science must have some understanding of the present aspect of knowledge as a result of historical evolution.” (Richard Curand [forward to Carl B Boyer’s “The History of the Calculus and Its Conceptual Development”, 1949])

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Søren Kierkegaard - Collected Quotes

"How close men, despite all their knowledge, usually live to madness? What is truth but to live for an idea? When all is said and done,...