23 July 2019

On Complex Numbers IIX

"There seems to me to be something analogous to polarized intensity in the pure imaginary part; and to unpolarized energy (indifferent to direction) in the real part of a quaternion: and thus we have some slight glimpse of a future Calculus of Polarities. This is certainly very vague […]" (Sir William R Hamilton, "On Quaternions; or on a new System of Imaginaries in Algebra", 1844) 

"Those who can, in common algebra, find a square root of -1, will be at no loss to find a fourth dimension in space in which ABC may become ABCD: or, if they cannot find it, they have but to imagine it, and call it an impossible dimension, subject to all the laws of the three we find possible. And just as √-1 in common algebra, gives all its significant combinations true, so would it be with any number of dimensions of space which the speculator might choose to call into impossible existence." (Augustus De Morgan, "Trigonometry and Double Algebra", 1849)

“The conception of the inconceivable [imaginary], this measurement of what not only does not, but cannot exist, is one of the finest achievements of the human intellect. No one can deny that such imaginings are indeed imaginary. But they lead to results grander than any which flow from the imagination of the poet. The imaginary calculus is one of the master keys to physical science. These realms of the inconceivable afford in many places our only mode of passage to the domains of positive knowledge. Light itself lay in darkness until this imaginary calculus threw light upon light. And in all modern researches into electricity, magnetism, and heat, and other subtile physical inquiries, these are the most powerful instruments.” (Thomas Hill, “The Imagination in Mathematics”, North American Review Vol. 85, 1857)

“When we consider that the whole of geometry rests ultimately on axioms which derive their validity from the nature of our intuitive faculty, we seem well justified in questioning the sense of imaginary forms, since we attribute to them properties which not infrequently contradict all our intuitions.” (Gottlob Frege, “On a Geometrical Representation of Imaginary forms in the Plane”, 1873) 

“[…] with few exceptions all the operations and concepts that occur in the case of real numbers can indeed be carried over unchanged to complex ones. However, the concept of being greater cannot very well be applied to complex numbers. In the case of integration, too, there appear differences which rest on the multplicity of possible paths of integration when we are dealing with complex variables. Nevertheless, the large extent to which imaginary forms conform to the same laws as real ones justifies the introduction of imaginary forms into geometry.” (Gottlob Frege, “On a Geometrical Representation of Imaginary forms in the Plane”, 1873) 

“When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition.” (Gottlob Frege, “Methods of Calculation based on an Extension of the Concept of Quantity”, 1874)

"The discovery of Minkowski […] is to be found […] in the fact of his recognition that the four-dimensional space-time continuum of the theory of relativity, in its most essential formal properties, shows a pronounced relationship to the three-dimensional continuum of Euclidean geometrical space. In order to give due prominence to this relationship, however, we must replace the usual time co-ordinate t by an imaginary magnitude, √-1*ct, proportional to it. Under these conditions, the natural laws satisfying the demands of the (special) theory of relativity assume mathematical forms, in which the time co-ordinate plays exactly the same role as the three space-coordinates. Formally, these four co-ordinates correspond exactly to the three space co-ordinates in Euclidean geometry." (Albert Einstein,"Relativity: The Special and General Theory", 1920) 

"As an operation, multiplication by i x i has the same effect as multiplication by -1; multiplication by i has the same effect as a rotation by a right angle, and these interpretations […] are consistent. […] Although the interpretation by means of rotations proves nothing, it may suggest that there is no occasion for anyone to muddle himself into a state of mystic wonderment over nothing about the grossly misnamed ‘imaginaries’." (Eric T Bell, "Gauss, the Prince of Mathematicians", 1956)

"How are we to explain the contrast between the matter-of-fact way in which √-1 and other imaginary numbers are accepted today and the great difficulty they posed for learned mathematicians when they first appeared on the scene? One possibility is that mathematical intuitions have evolved over the centuries and people are generally more willing to see mathematics as a matter of manipulating symbols according to rules and are less insistent on interpreting all symbols as representative of one or another aspect of physical reality. Another, less self-congratulatory possibility is that most of us are content to follow the computational rules we are taught and do not give a lot of thought to rationales." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

 "All these questions he [the master?] does not pose. So we have to ask them: is the ‘Ring I’ a trap to catch the master or is the ‘Ring I’ a vessel of understanding? In quantum theory it specifies a formula which includes the irrational in a symbol of totality, in a holistic ‘cosmogramm’. But the formula has a catch. If one squares i = √-1, although a negative, one obtains a rationally understandable negative number -1. So one can make the irrational disappear through a slight of hand. This formula does not correspond to reality because the irrational that we call the collective unconscious or the objective psyche can never be rational. It remains always creatively spontaneous, not predictable, not manipulatable. Each holistic formula is in that sense also a trap, because it brings about the illusion that one has understood the whole." (Marie Louise von Franz, "Reflexionen zum ‘Ring I’")

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...