"Reductionism (ultimately, the empirical explanability of everything and a cornerstone of science), has uses that are appropriate, and it also can be used inappropriately. It is appropriately used as a way (one way) of understanding what is empirically known or empirically knowable. When it becomes merely an intellectual 'position' confronting what is not empirically known or knowable, then it becomes very quickly absurd, and also grossly desensitizing and false." (Wendell Berry, "Life Is A Miracle: An Essay Against Modern Superstition", 2000)
"As a meta-discipline, systems science will transfer its content from discipline to discipline and address problems beyond conventional reductionist boundaries. Generalists, qualified to manage today’s problem better than the specialist, could be fostered. With these intentions, systems thinking and systems science should not replace but add, complement and integrate those aspects that seem not to be adequately treated by traditional science." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)
"Reductionism argues that from scientific theories which explain phenomena on one level, explanations for a higher level can be deduced. Reality and our experience can be reduced to a number of indivisible basic elements. Also qualitative properties are possible to reduce to quantitative ones." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)
"Systems thinking expands the focus of the observer, whereas analytical thinking reduces it. In other words, analysis looks into things, synthesis looks out of them. This attitude of systems thinking is often called expansionism, an alternative to classic reductionism. Whereas analytical thinking concentrates on static and structural properties, systems thinking concentrates on the function and behaviour of whole systems. Analysis gives description and knowledge; systems thinking gives explanation and understanding." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)
"Deep change in mental models, or double-loop learning, arises when evidence not only alters our decisions within the context of existing frames, but also feeds back to alter our mental models. As our mental models change, we change the structure of our systems, creating different decision rules and new strategies. The same information, interpreted by a different model, now yields a different decision. Systems thinking is an iterative learning process in which we replace a reductionist, narrow, short-run, static view of the world with a holistic, broad, long-term, dynamic view, reinventing our policies and institutions accordingly." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)
"The traditional, scientific method for studying such systems is known as reductionism. Reductionism sees the parts as paramount and seeks to identify the parts, understand the parts and work up from an understanding of the parts to an understanding of the whole. The problem with this is that the whole often seems to take on a form that is not recognizable from the parts. The whole emerges from the interactions between the parts, which affect each other through complex networks of relationships. Once it has emerged, it is the whole that seems to give meaning to the parts and their interactions." (Michael C Jackson, "Systems Thinking: Creative Holism for Managers", 2003)
"There exists an alternative to reductionism for studying systems. This alternative is known as holism. Holism considers systems to be more than the sum of their parts. It is of course interested in the parts and particularly the networks of relationships between the parts, but primarily in terms of how they give rise to and sustain in existence the new entity that is the whole whether it be a river system, an automobile, a philosophical system or a quality system." (Michael C. Jackson, "Systems Thinking: Creative Holism for Manager", 2003)
"Gödel's theorem shows conclusively that in pure mathematics reductionism does not work. To decide whether a mathematical statement is true, it is not sufficient to reduce the statement to marks on paper and to study the behavior of the marks. Except in trivial cases, you can decide the truth of a statement only by studying its meaning and its context in the larger world of mathematical ideas." (Freeman Dyson, "The Scientist As Rebel", 2006)
"Complexity has shown that reductionism is limited, in the sense that emergent properties cannot be reduced. In other words, the properties at a given scale cannot be always described completely in terms of properties at a lower scale. This has led people to debate on the reality of phenomena at different scales." (Carlos Gershenson, "Complexity", 2011)
"Holism [is] the art - in contrast with reductionism - of seeing a complex system as a whole. Holism knows the limits to its understanding; it acknowledges that the system has its wildness, its privacy, its own reasons, its defenses against invasive explanation." (David Fleming, "Lean Logic", 2016)