"A giant component is a connected component whose size is on the same order of magnitude as the size of the whole network. Network percolation is the appearance of such a giant component in a random graph, which occurs when the average node degree is above 1." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"A good model is simple, valid, and robust. Simplicity of a model is really the key essence of what modeling is all about. The main reason why we want to build a model is that we want to have a shorter, simpler description of reality. [...] Validity of a model is how closely the model’s prediction agrees with the observed reality. This is of utmost importance from a practical viewpoint. If your model’s prediction doesn’t reasonably match the observation, the model is not representing reality and is probably useless. [...] finally, robustness of a model is how insensitive the model’s prediction is to minor variations of model assumptions and/or parameter settings. This is important because there are always errors when we create assumptions about, or measure parameter values from, the real world. If the prediction made by your model is sensitive to their minor variations, then the conclusion derived from it is probably not reliable." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"A model is a simplified representation of a system. It can be conceptual, verbal, diagrammatic, physical, or formal (mathematical)." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Bifurcation is a qualitative, topological change of a system’s phase space that occurs when some parameters are slightly varied across their critical thresholds. Bifurcations play important roles in many real-world systems as a switching mechanism. […] There are two categories of bifurcations. One is called a local bifurcation, which can be characterized by a change in the stability of equilibrium points. It is called local because it can be detected and analyzed only by using localized information around the equilibrium point. The other category is called a global bifurcation, which occurs when non-local features of the phase space, such as limit cycles (to be discussed later), collide with equilibrium points in a phase space. This type of bifurcation can’t be characterized just by using localized information around the equilibrium point." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Chaos can be understood as a dynamical process in which microscopic information hidden in the details of a system’s state is dug out and expanded to a macroscopically visible scale (stretching), while the macroscopic information visible in the current system’s state is continuously discarded (folding)." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Chaos is a long-term behavior of a nonlinear dynamical system that never falls in any static or periodic trajectories. [It] looks like a random fluctuation, but still occurs in completely deterministic, simple dynamical systems. [It] exhibits sensitivity to initial conditions. [It] occurs when the period of the trajectory of the system’s state diverges to infinity. [It] occurs when no periodic trajectories are stable." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Complex systems are networks made of a number of components that interact with each other, typically in a nonlinear fashion. Complex systems may arise and evolve through self-organization, such that they are neither completely regular nor completely random, permitting the development of emergent behavior at macroscopic scales." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Emergence is a nontrivial relationship between the properties of a system at microscopic and macroscopic scales. Macroscopic properties are called emergent when it is hard to explain them simply from microscopic properties." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Equilibrium points are important for both theoretical and practical reasons. Theoretically, they are key points in the system’s phase space, which serve as meaningful references when we understand the structure of the phase space. And practically, there are many situations where we want to sustain the system at a certain state that is desirable for us. In such cases, it is quite important to know whether the desired state is an equilibrium point, and if it is, whether it is stable or unstable." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Mean-field approximation is a technique that ignores spatial relationships among components. It works quite well for systems whose parts are fully connected or randomly interacting with each other. It doesn’t work if the interactions are local or non-homogeneous, and/or if the system has a non-uniform pattern of states. In such cases, you could still use mean-field approximation as a preliminary, “zeroth-order” approximation, but you should not derive a final conclusion from it." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"[...] nonlinearity means that the outputs of a system are not given by a linear combination of the inputs. In the context of system behavior, the inputs and outputs can be the current and next states of the system, and if their relationship is not linear, the system is called a nonlinear system." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"One of the unique features of typical CA [ cellular automata] models is that time, space, and states of cells are all discrete. Because of such discreteness, the number of all possible state-transition functions is finite, i.e., there are only a finite number of “universes” possible in a given CA setting. Moreover, if the space is finite, all possible configurations of the entire system are also enumerable. This means that, for reasonably small CA settings, one can conduct an exhaustive search of the entire rule space or phase space to study the properties of all the 'parallel universes'." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Self-organization is a dynamical process by which a system spontaneously forms nontrivial macroscopic structures and/or behaviors over time." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"The challenge in developing a model becomes particularly tough when it comes to the modeling of complex systems, because their unique properties (networks, nonlinearity, emergence, self-organization, etc.) are not what we are familiar with. We usually think about things on a single scale in a step-by-step, linear chain of reasoning, in which causes and effects are clearly distinguished and discussed sequentially. But this approach is not suitable for understanding complex systems where a massive amount of components are interacting with each other interdependently to generate patterns over a broad range of scales. Therefore, the behavior of complex systems often appears to contradict our everyday experiences." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"The sensitivity of chaotic systems to initial conditions is particularly well known under the moniker of the 'butterfly effect', which is a metaphorical illustration of the chaotic nature of the weather system in which 'a flap of a butterfly’s wings in Brazil could set off a tornado in Texas'. The meaning of this expression is that, in a chaotic system, a small perturbation could eventually cause very large-scale difference in the long run." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"There are several reasons why reaction-diffusion systems have been a popular choice among mathematical modelers of spatio-temporal phenomena. First, their clear separation between non-spatial and spatial dynamics makes the modeling and simulation tasks really easy. Second, limiting the spatial movement to only diffusion makes it quite straightforward to expand any existing non-spatial dynamical models into spatially distributed ones. Third, the particular structure of reaction-diffusion equations provides aneasy shortcut in the stability analysis (to be discussed in the next chapter). And finally, despite the simplicity of their mathematical form, reaction-diffusion systems can show strikingly rich, complex spatio-temporal dynamics. Because of these properties, reaction-diffusion systems have been used extensively for modeling self-organization of spatial patterns." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Trajectories of a deterministic dynamical system will never branch off in its phase space (though they could merge), because if they did, that would mean that multiple future states were possible, which would violate the deterministic nature of the system. No branching means that, once you specify an initial state of the system, the trajectory that follows is uniquely determined too. You can visually inspect where the trajectories are going in the phase space visualization. They may diverge to infinity, converge to a certain point, or remain dynamically changing yet stay in a confined region in the phase space from which no outgoing trajectories are running out. Such a converging point or a region is called an attractor." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"Variable rescaling is a technique to eliminate parameters from your model without losing generality. The basic idea is this: Variables that appear in your model represent quantities that are measured in some kind of units, but those units can be arbitrarily chosen without changing the dynamics of the system being modeled. This must be true for all scientific quantities that have physical dimensions - switching from inches to centimeters shouldn’t cause any change in how physics works! This means that you have the freedom to choose any convenient unit for each variable, some of which may simplify your model equations." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
No comments:
Post a Comment