“No branch of number theory is more saturated with mystery than the study of prime numbers: those exasperating, unruly integerst hat refuse to be divided evenly by any integers except themselves and 1. Some problems concerning primes are so simple that a child can understand them and yet so deep and far from solved that many mathematicians now suspect they have no solution. Perhaps they are ‘undecidable’. Perhaps number theory, like quantum mechanics, has its own uncertainty principle that makes it necessary, in certain areas, to abandon exactness for probabilistic formulations." (Martin Gardner, "The remarkable lore of the prime numbers", Scientific American, 1964)
“[…] there is no apparent reason why one number is prime and another not. To the contrary, upon looking at these numbers one has the feeling of being in the presence of one of the inexplicable secrets of creation.” (Don Zagier, “The First 50 Million Prime Numbers”, The Mathematical Intelligencer, Volume 0, 1977)
"Prime numbers have always fascinated mathematicians, professional and amateur alike. They appear among the integers, seemingly at random, and yet not quite: there seems to be some order or pattern, just a little below the surface, just a little out of reach." (Underwood Dudley, “Elementary Number Theory”, 1978)
"Some order begins to emerge from this chaos when the primes are considered not in their individuality but in the aggregate; one considers the social statistics of the primes and not the eccentricities of the individuals." (Philip J Davis & Reuben Hersh, “The Mathematical Experience”, 1981)
“Prime numbers. It was all so neat and elegant. Numbers that refuse to cooperate, that don’t change or divide, numbers that remain themselves for all eternity.” (Paul Auster, “The Music of Chance”, 1990) "It is evident that the primes are randomly distributed but, unfortunately, we don't know what 'random' means.'' (Rob C Vaughan, 1990)
“To me, that the distribution of prime numbers can be so accurately represented in a harmonic analysis is absolutely amazing and incredibly beautiful. It tells of an arcane music and a secret harmony composed by the prime numbers.” (Enrico Bombieri, ”PrimeTerritory", The Sciences, 1992)
"Prime numbers are the most basic objects in mathematics. They also are among the most mysterious, for after centuries of study, the structure of the set of prime numbers is still not well understood […]" (Andrew Granville, 1997)
"To some extent the beauty of number theory seems to be related to the contradiction between the simplicity of the integers and the complicated structure of the primes, their building blocks. This has always attracted people." (Andreas Knauf, "Number Theory, Dynamical Systems and Statistical Mechanics", 1998)
"Since they represent so natural a sequence, it is almost irresistible to search for patterns among the primes. There are however no genuinely useful formulas for prime numbers. That is to say there is no rule that allows you to generate all prime numbers or even to calculate a sequence that consists entirely of different primes." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
No comments:
Post a Comment