08 September 2018

The Arithmetic behind Numbers

"[Arithmetic] has a very great and elevating effect, compelling the soul to reason about abstract numbers, and rebelling against the introduction of visible or tangible objects into the argument." (Plato)

 “Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space.” (James J Sylvester, “A Probationary Lecture on Geometry”, 1844)

"The mathematical phenomenon always develops out of simple arithmetic, so useful in everyday life, out of numbers, those weapons of the gods; the gods are there, behind the wall, at play with numbers." (Le Corbusier)

“I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetical act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding […]” (Richard Dedekind, “On Continuity and Irrational Numbers”, 1872)

“Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians.” (Bertrand Russell, “The Principles of Mathematics”, 1903)

“Arithmetic does not present to us that feeling of continuity which is such a precious guide; each whole number is separate from the next of its kind and has in a sense individuality; each in a manner is an exception and that is why general theorems are rare in the theory of numbers; and that is why those theorems which may exist are more hidden and longer escape those who are searching for them.” (Henri Poincaré, “Annual Report of the Board of Regents of the Smithsonian Institution”, 1909)

“The way to enable a student to apprehend the instrumental value of arithmetic is not to lecture him on the benefit it will be to him in some remote and uncertain future, but to let him discover that success in something he is interested in doing depends on ability to use numbers.” (John Dewey, “Democracy and Education: An Introduction to the Philosophy of Education”, 1916)

“In other words, without a theory, a plan, the mere mechanical manipulation of the numbers in a problem does not necessarily make sense just because you are using Arithmetic!” (Lillian R Lieber, “The Education of T.C. MITS”, 1944)

“For it is true, generally speaking, that mathematics is not a popular subject, even though its importance may be generally conceded. The reason for this is to be found in the common superstition that mathematics is but a continuation, a further development, of the fine art of arithmetic, of juggling with numbers.” (David Hilbert, “Anschauliche Geometrie”, 1932)

“Arithmetic, then, means dealing logically with certain facts that we know, about numbers, with a view to arriving at knowledge which as yet we do not possess.” (Anonymous)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...