24 October 2020

On Cybernetics (2000-2009)

"An opportunity for cybernetics to change the course of the philosophy of mind was missed when intentionality was misinterpreted as 'the providing of coded knowledge'." (Igor Aleksander, New Scientist Vol. 169, 2001)

"Probably the first clear insight into the deep nature of control […] was that it is not about pulling levers to produce intended and inexorable results. This notion of control applies only to trivial machines. It never applies to a total system that includes any kind of probabilistic element - from the weather, to people; from markets, to the political economy. No: the characteristic of a non-trivial system that is under control, is that despite dealing with variables too many to count, too uncertain to express, and too difficult even to understand, something can be done to generate a predictable goal. Wiener found just the word he wanted in the operation of the long ships of ancient Greece. At sea, the long ships battled with rain, wind and tides - matters in no way predictable. However, if the man operating the rudder kept his eye on a distant lighthouse, he could manipulate the tiller, adjusting continuously in real-time towards the light. This is the function of steersmanship. As far back as Homer, the Greek word for steersman was kubernetes, which transliterates into English as cybernetes." (Stafford Beer, "What is cybernetics?", Kybernetes, 2002) 

“The shocking thing is that there is truth in every one of these notions, and the reason is because cybernetics is an interdisciplinary subject. It must be complicated." (Stafford Beer, "What is cybernetics?", Kybernetes, 2002)

"The science of cybernetics is not about thermostats or machines; that characterization is a caricature. Cybernetics is about purposiveness, goals, information flows, decision-making control processes and feedback (properly defined) at all levels of living systems." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"The single most important property of a cybernetic system is that it is controlled by the relationship between endogenous goals and the external environment. [...] In a complex system, overarching goals may be maintained (or attained) by means of an array of hierarchically organized subgoals that may be pursued contemporaneously, cyclically, or seriatim." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"A great deal of the results in many areas of physics are presented in the form of conservation laws, stating that some quantities do not change during evolution of the system. However, the formulations in cybernetical physics are different. Since the results in cybernetical physics establish how the evolution of the system can be changed by control, they should be formulated as transformation laws, specifying the classes of changes in the evolution of the system attainable by control function from the given class, i.e., specifying the limits of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Cybernetics is the study of systems and processes that interact with themselves and produce themselves from themselves." (Louis Kauffman, 2007)

"Systematic usage of the methods of modern control theory to study physical systems is a key feature of a new research area in physics that may be called cybernetical physics. The subject of cybernetical physics is focused on studying physical systems by means of feedback interactions with the environment. Its methodology heavily relies on the design methods developed in cybernetics. However, the approach of cybernetical physics differs from the conventional use of feedback in control applications (e.g., robotics, mechatronics) aimed mainly at driving a system to a prespecified position or a given trajectory." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"The methodology of feedback design is borrowed from cybernetics (control theory). It is based upon methods of controlled system model’s building, methods of system states and parameters estimation (identification), and methods of feedback synthesis. The models of controlled system used in cybernetics differ from conventional models of physics and mechanics in that they have explicitly specified inputs and outputs. Unlike conventional physics results, often formulated as conservation laws, the results of cybernetical physics are formulated in the form of transformation laws, establishing the possibilities and limits of changing properties of a physical system by means of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"For me, as I later came to say, cybernetics is the art of creating equilibrium in a world of possibilities and constraints. This is not just a romantic description, it portrays the new way of thinking quite accurately. Cybernetics differs from the traditional scientific procedure, because it does not try to explain phenomena by searching for their causes, but rather by specifying the constraints that determine the direction of their development." (Ernst von Glasersfeld, "The Cybernetics of Snow Drifts 1948", 2009)

"[…] in cybernetics, control is seen not as a function of one agent over something else, but as residing within circular causal networks, maintaining stabilities in a system. Circularities have no beginning, no end and no asymmetries. The control metaphor of communication, by contrast, punctuates this circularity unevenly. It privileges the conceptions and actions of a designated controller by distinguishing between messages sent in order to cause desired effects and feedback that informs the controller of successes or failures." (Klaus Krippendorff, "On Communicating: Otherness, Meaning, and Information", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...