20 November 2021

On Principles (1975-1999)

"No theory ever agrees with all the facts in its domain, yet it is not always the theory that is to blame. Facts are constituted by older ideologies, and a clash between facts and theories may be proof of progress. It is also a first step in our attempt to find the principles implicit in familiar observational notions." (Paul K Feyerabend, "Against Method: Outline of an Anarchistic Theory of Knowledge", 1975)

"The conception of the mental construction which is the fully analysed proof as being an infinite structure must, of course, be interpreted in the light of the intuitionist view that all infinity is potential infinity: the mental construction consists of a grasp of general principles according to which any finite segment of the proof could be explicitly constructed." (Michael Dummett, "The philosophical basis of intuitionistic logic", 1975)

"A good theorem will almost always have a wide-ranging influence on later mathematics, simply by virtue of the fact that it is true. Since it is true, it must be true for some reason; and if that reason lies deep, then the uncovering of it will usually require a deeper understanding of neighboring facts and principles." (Ian Richards, "Number theory", 1978)

"Real progress in understanding nature is rarely incremental. All important advances are sudden intuitions, new principles, new ways of seeing." (Marilyn Ferguson, "The Aquarian Conspiracy: Personal and Social Transformation in the 1980s", 1980)

"For the great majority of mathematicians, mathematics is […] a whole world of invention and discovery - an art. The construction of a new theorem, the intuition of some new principle, or the creation of a new branch of mathematics is the triumph of the creative imagination of the mathematician, which can be compared to that of a poet, the painter and the sculptor." (George F J Temple, "100 Years of Mathematics: a Personal Viewpoint", 1981)

"Both religion and science must preserve their autonomy and their distinctiveness. Religion is not founded on science nor is science an extension of religion. Each should possess its own principles, its pattern of procedures, its diversities of interpretation and its own conclusions." (Pope John Paul II, [Letter to Father George V Coyne], 1988)

"[…] mathematics does not come to us written indelibly on Nature’s Tablets, but rather is the product of a controlled search governed by metaphorical considerations, the premier instance being the heuristics of the conservation principles." (Philip Mirowski, "More Heat than Light: Economics as Social Physics: Physics as Nature’s Economics", 1989)

"Principles are the territory. Values are maps. When we value correct principles, we have truth - a knowledge of things as they are." (Stephen R Covey, "The 7 Habits of Highly Effective People", 1989)

"The ‘objective reality’, or the territory itself, is composed of ‘lighthouse’ principles that govern human growth and happiness - natural laws that are woven into the fabric of every civilized society throughout history and comprise the roots of every family and institution that has endured and prospered. The degree to which our mental maps accurately describe the territory does not alter its existence." (Stephen Covey, "The 7 Habits of Highly Effective People", 1989)

"A distinctive feature of mathematics, that feature in virtue of which it stands as a paradigmatically rational discipline, is that assertions are not accepted without proof. […] By proof is meant a deductively valid, rationally compelling argument which shows why this must be so, given what it is to be a triangle. But arguments always have premises so that if there are to be any proofs there must also be starting points, premises which are agreed to be necessarily true, self-evident, neither capable of, nor standing in need of, further justification. The conception of mathematics as a discipline in which proofs are required must therefore also be a conception of a discipline in which a systematic and hierarchical order is imposed on its various branches. Some propositions appear as first principles, accepted without proof, and others are ordered on the basis of how directly they can be proved from these first principle. Basic theorems, once proved, are then used to prove further results, and so on. Thus there is a sense in which, so long as mathematicians demand and provide proofs, they must necessarily organize their discipline along lines approximating to the pattern to be found in Euclid's Elements." (Mary Tiles,"Mathematics and the Image of Reason" , 1991)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)

"Within image theory, it is suggested that important components of decision-making processes are the different 'images' that a person may use to evaluate choice options. Images may represent a person's principles, goals, or plans. Decision options may then match or not match these images and be adopted, rejected, considered further, depending on circumstances." (Deborah J Terry & Michael A Hogg, "Attitudes, Behavior, and Social Context: The Role of Norms and Group Membership", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

A Picture's Worth

"The drawing shows me at a glance what would be spread over ten pages in a book." (Ivan Turgenev, 1862) [2] "Sometimes, half ...