"Mathematical analysis is as extensive as nature itself; it defines all perceptible relations, measures times, spaces, forces, temperatures; this difficult science is formed slowly, but it preserves every principle which it has once acquired; it grows and strengthens itself incessantly in the midst of the many variations and errors of the human mind. It's chief attribute is clearness; it has no marks to express confused notations. It brings together phenomena the most diverse, and discovers the hidden analogies which unite them." (J B Joseph Fourier, "The Analytical Theory of Heat", 1822)
"The aim of every science is foresight. For the laws of established observation of phenomena are generally employed to foresee their succession. All men, however little advanced make true predictions, which are always based on the same principle, the knowledge of the future from the past." (Auguste Compte, "Plan des travaux scientifiques nécessaires pour réorganiser la société", 1822)
"It is true that of far the greater part of things, we must content ourselves with such knowledge as description may exhibit, or analogy supply; but it is true likewise, that these ideas are always incomplete, and that at least, till we have compared them with realities, we do not know them to be just. As we see more, we become possessed of more certainties, and consequently gain more principles of reasoning, and found a wider base of analogy." (Samuel Johnson, 1825)
"To invent without scruple a new principle to every new phenomenon, instead of adapting it to the old; to overload our hypothesis with a variety of this kind, are certain proofs that none of these principles is the just one, and that we only desire, by a number of falsehoods, to cover our ignorance of the truth." (David Hume, "Of the passions", 1826)
"In Pure Mathematics, where all the various truths are necessarily connected with each other, (being all necessarily connected with those hypotheses which are the principles of the science), an arrangement is beautiful in proportion as the principles are few; and what we admire perhaps chiefly in the science, is the astonishing variety of consequences which may be demonstrably deduced from so small a number of premises." (Dugald Stewart, "Elements of the Philosophy of the Human Mind" Vol. 3, 1827)
"For one person who is blessed with the power of invention, many will always be found who have the capacity of applying principles." (Charles Babbage, "Reflections on the Decline of Science in England, and on Some of Its Causes", 1830)
"A maxim is a conclusion upon observation of matters of fact, and is merely speculative; a ‘principle’ carries knowledge within itself, and is prospective." (Samuel T Coleridge, "The Table Talk and Omniana of Samuel Taylor Coleridge", 1831)
"The function of theory is to put all this in systematic order, clearly and comprehensively, and to trace each action to an adequate, compelling cause. […] Theory should cast a steady light on all phenomena so that we can more easily recognize and eliminate the weeds that always spring from ignorance; it should show how one thing is related to another, and keep the important and the unimportant separate. If concepts combine of their own accord to form that nucleus of truth we call a principle, if they spontaneously compose a pattern that becomes a rule, it is the task of the theorist to make this clear." (Carl von Clausewitz, "On War", 1832)
"The insights gained and garnered by the mind in its wanderings among basic concepts are benefits that theory can provide. Theory cannot equip the mind with formulas for solving problems, nor can it mark the narrow path on which the sole solution is supposed to lie by planting a hedge of principles on either side. But it can give the mind insight into the great mass of phenomena and of their relationships, then leave it free to rise into the higher realms of action." (Carl von Clausewitz, "On War", 1832)
"Algebra, as an art, can be of no use to any one in the business of life; certainly not as taught in the schools. I appeal to every man who has been through the school routine whether this be not the case. Taught as an art it is of little use in the higher mathematics, as those are made to feel who attempt to study the differential calculus without knowing more of the principles than is contained in books of rules." (Augustus de Morgan, "Elements of Algebra", 1837)
"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)
"[…] in order to observe, our mind has need of some theory or other. If in contemplating phenomena we did not immediately connect them with principles, not only would it be impossible for us to combine these isolated observations, and therefore to derive profit from them, but we should even be entirely incapable of remembering facts, which would for the most remain unnoted by us." (Auguste Comte, "Cours de Philosophie Positive", 1830-1842)
"There are, undoubtedly, the most ample reasons for stating both the principles and theorems [of geometry] in their general form […] But, that an unpractised learner, even in making use of one theorem to demonstrate another, reasons rather from particular to particular than from the general proposition, is manifest from the difficulty he finds in applying a theorem to a case in which the configuration of the diagram is extremely unlike that of the diagram by which the original theorem was demonstrated. A difficulty which, except in cases of unusual mental powers, long practice can alone remove, and removes chiefly by rendering us familiar with all the configurations consistent with the general conditions of the theorem." (John S Mill, "A System of Logic", 1843)
"In truth, ideas and principles are independent of men; the application of them and their illustration is man's duty and merit." (Edward Forbes, 1847)
No comments:
Post a Comment