19 May 2024

On Perfection: Perfect Symmetry

"The fact is that the beautiful, humanly speaking, is merely form considered in its simplest aspect, in its most perfect symmetry, in its most entire harmony with our make-up." (Victor Hugo, "Cromwell", 1909)

"Symmetry, as wide or as narrow as you may define its meaning, is one idea by which man through the ages has tried to comprehend and create order, beauty, and perfection." (Herman Weyl, "Symmetry", 1938)

"[...] nature seems to take advantage of the simple mathematical representations of the symmetry laws. When one pauses to consider the elegance and the beautiful perfection of the mathematical reasoning involved and contrast it with the complex and far-reaching physical consequences, a deep sense of respect for the power of the symmetry laws never fails to develop." (Chen-Ning Yang, "The Law of Parity Conservation and Other Symmetry Laws of Physics", [Nobel lecture] 1957)

"Nature is never perfectly symmetric. Nature's circles always have tiny dents and bumps. There are always tiny fluctuations, such as the thermal vibration of molecules. These tiny imperfections load Nature's dice in favour of one or other of the set of possible effects that the mathematics of perfect symmetry considers to be equally possible." (Ian Stewart & Martin Golubitsky,"Fearful Symmetry: Is God a Geometer?", 1992)

"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Skewness is a measure of symmetry. For example, it's zero for the bell-shaped normal curve, which is perfectly symmetric about its mean. Kurtosis is a measure of the peakedness, or fat-tailedness, of a distribution. Thus, it measures the likelihood of extreme values." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ‎K Nishijima ,"Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"The possibility of translating uncertainties into risks is much more restricted in the propensity view. Propensities are properties of an object, such as the physical symmetry of a die. If a die is constructed to be perfectly symmetrical, then the probability of rolling a six is 1 in 6. The reference to a physical design, mechanism, or trait that determines the risk of an event is the essence of the propensity interpretation of probability. Note how propensity differs from the subjective interpretation: It is not sufficient that someone’s subjective probabilities about the outcomes of a die roll are coherent, that is, that they satisfy the laws of probability. What matters is the die’s design. If the design is not known, there are no probabilities." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"The word ‘symmetry’ conjures to mind objects which are well balanced, with perfect proportions. Such objects capture a sense of beauty and form. The human mind is constantly drawn to anything that embodies some aspect of symmetry. Our brain seems programmed to notice and search for order and structure. Artwork, architecture and music from ancient times to the present day play on the idea of things which mirror each other in interesting ways. Symmetry is about connections between different parts of the same object. It sets up a natural internal dialogue in the shape." (Marcus du Sautoy,"Symmetry: A Journey into the Patterns of Nature", 2008)

"Mathematical symmetry is an idealized model. However, slightly imperfect symmetry requires explanation; it’s not enough just to say ‘it’s asymmetric’." (Ian Stewart, "Symmetry: A Very Short Introduction", 2013)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...