"Because the subject matter of cybernetics is the propositional or informational aspect of the events and objects in the natural world, this science is forced to procedures rather different from those of the other sciences. The differentiation, for example, between map and territory, which the semanticists insist that scientists shall respect in their writings must, in cybernetics, be watched for in the very phenomena about which the scientist writes. Expectably, communicating organisms and badly programmed computers will mistake map for territory; and the language of the scientist must be able to cope with such anomalies." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)
"However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system." (Donella H Meadows, "Limits to Growth", 1972)
"[...] the influence of a single butterfly is not only a fine detail-it is confined to a small volume. Some of the numerical methods which seem to be well adapted for examining the intensification of errors are not suitable for studying the dispersion of errors from restricted to unrestricted regions. One hypothesis, unconfirmed, is that the influence of a butterfly's wings will spread in turbulent air, but not in calm air." (Edward N Lorenz, [talk] 1972)
"A diverse community is a resilient community, capable of adapting to changing situations. However, diversity is a strategic advantage only if there is a truly vibrant community, sustained by a web of relationships. If the community is fragmented into isolated groups and individuals, diversity can easily become a source of prejudice and friction. But if the community is aware of the interdependence of all its members, diversity will enrich all the relationships and thus enrich the community as a whole, as well as each individual member. In such a community information and ideas flow freely through the entire network, and the diversity of interpretations and learning styles-even the diversity of mistakes-will enrich the entire community." (Humberto Maturana & Francisco J Varela, "The Tree of Knowledge", 1987)
"It is important to emphasize the value of simplicity and elegance, for complexity has a way of compounding difficulties and as we have seen, creating mistakes. My definition of elegance is the achievement of a given functionality with a minimum of mechanism and a maximum of clarity." (Fernando J Corbató, "On Building Systems That Will Fail", 1991)
"A model for simulating dynamic system behavior requires formal policy descriptions to specify how individual decisions are to be made. Flows of information are continuously converted into decisions and actions. No plea about the inadequacy of our understanding of the decision-making processes can excuse us from estimating decision-making criteria. To omit a decision point is to deny its presence - a mistake of far greater magnitude than any errors in our best estimate of the process." (Jay W Forrester, "Policies, decisions and information sources for modeling", 1994)
"This distinction is familiar in natural science, where one is not expected to mistake, say, the cardiovascular system for the circulation of the blood or the brain with mental processes. But it is unusual in social studies. [...] Mechanism is to system as motion is to body, combination (or dissociation) to chemical compound, and thinking to brain. [In the systemic view], agency is both constrained and motivated by structure, and in turn the latter is maintained or altered by individual action. In other words, social mechanisms reside neither in persons nor in their environment – they are part of the processes that unfold in or among social systems. […] All mechanisms are system-specific: there is no such thing as a universal or substrate-neutral mechanism." (Mario Bunge, "The Sociology-philosophy Connection", 1999)
"A depressing corollary of the butterfly effect (or so it was widely believed) was that two chaotic systems could never synchronize with each other. Even if you took great pains to start them the same way, there would always be some infinitesimal difference in their initial states. Normally that small discrepancy would remain small for a long time, but in a chaotic system, the error cascades and feeds on itself so swiftly that the systems diverge almost immediately, destroying the synchronization. Unfortunately, it seemed, two of the most vibrant branches of nonlinear science - chaos and sync - could never be married. They were fundamentally incompatible." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)
"Adaptive systems learn by enlightened trial and error. The system can take a long time to learn well just as it can take a human a long time to learn to properly swing a golf club even with the help of the best golf instructor. But this iterative learning can also produce solutions that we could not find or at least could not find easily by pure mathematical analysis." (Bart Kosko, "Noise", 2006)
"We forget - or we willfully ignore - that our models are simplifications of the world. We figure that if we make a mistake, it will be at the margin. In complex systems, however, mistakes are not measured in degrees but in whole orders of magnitude." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)
"[…] humans make mistakes when they try to count large numbers in complicated systems. They make even greater errors when they attempt - as they always do - to reduce complicated systems to simple numbers." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)
"With a linear growth of errors, improving the measurements could always keep pace with the desire for longer prediction. But when errors grow exponentially fast, a system is said to have sensitive dependence on its initial conditions. Then long-term prediction becomes impossible. This is the philosophically disturbing message of chaos." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)
No comments:
Post a Comment