"Mathematics is about truth: discovering the truth, knowing the truth, and communicating the truth to others. It would be a great mistake to discuss mathematics without talking about its relation to the truth, for truth is the essence of mathematics. In its search for the purity of truth, mathematics has developed its own language and methodologies - its own way of paring down reality to an inner essence and capturing that essence in subtle patterns of thought. Mathematics is a way of using the mind with the goal of knowing the truth, that is, of obtaining certainty." (William Byers, "How Mathematicians Think", 2007)
"There are two aspects of proof to be borne in mind. One is that it is our lingua franca. It is the mathematical mode of discourse. It is our tried-and true methodology for recording discoveries in a bullet-proof fashion that will stand the test of time. The second, and for the working mathematician the most important, aspect of proof is that the proof of a new theorem explains why the result is true. In the end what we seek is new understanding, and ’proof’ provides us with that golden nugget." (Steven G Krantz, "The Proof is in the Pudding", 2007)
"[…] a proof is a device of communication. The creator or discoverer of this new mathematical result wants others to believe it and accept it." (Steven G Krantz, "The Proof is in the Pudding", 2007)
"I enjoy mathematics so much because it has a strange kind of unearthly beauty. There is a strong feeling of pleasure, hard to describe, in thinking through an elegant proof, and even greater pleasure in discovering a proof not previously known." (Martin Gardner, 2008)
"Mathematics is the music of reason. To do mathematics is to engage in an act of discovery and conjecture, intuition and inspiration; to be in a state of confusion - not because it makes no sense to you, but because you gave it sense and you still don't understand what your creation is up to; to have a break-through idea; to be frustrated as an artist; to be awed and overwhelmed by an almost painful beauty; to be alive, damn it." (Paul Lockhart, "A Mathematician's Lament", 2009)
"What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?" (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2010)
"[…] intuition is a very important factor in the psychology of mathematics, in the sense that mathematicians spend a great deal of time exploring guesses and checking out hunches in their efforts to discover and prove new theorems." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2010)
Quotes and Resources Related to Mathematics, (Mathematical) Sciences and Mathematicians
Subscribe to:
Post Comments (Atom)
On Data: Longitudinal Data
"Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...
No comments:
Post a Comment