"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning), it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability; they take up some part of space and last for some period of time." (René Thom, "Structural Stability and Morphogenesis", 1972)
"'Disorder' is not mere chaos; it implies defective order." (John M Ziman, "Models of Disorder", 1979)
"Chaos and catastrophe theories are among the most interesting recent developments in nonlinear modeling, and both have captured the interests of scientists in many disciplines. It is only natural that social scientists should be concerned with these theories. Linear statistical models have proven very useful in a great deal of social scientific empirical analyses, as is evidenced by how widely these models have been used for a number of decades. However, there is no apparent reason, intuitive or otherwise, as to why human behavior should be more linear than the behavior of other things, living and nonliving. Thus an intellectual movement toward nonlinear models is an appropriate evolutionary movement in social scientific thinking, if for no other reason than to expand our paradigmatic boundaries by encouraging greater flexibility in our algebraic specifications of all aspects of human life." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)
"[...] chaos and catastrophe theories per se address behavioral phenomena that are consequences of two general types of nonlinear dynamic behavior. In the most elementary of behavioral terms, chaotic phenomena are a class of deterministic processes that seem to mimic random or stochastic dynamics. Catastrophe phenomena, on the other hand, are a class of dynamic processes that exhibit a sudden and large scale change in at least one variable in correspondence with relatively small changes in other variables or, in some cases, parameters." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)
"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)
"Chaos can be understood as a dynamical process in which microscopic information hidden in the details of a system’s state is dug out and expanded to a macroscopically visible scale (stretching), while the macroscopic information visible in the current system’s state is continuously discarded (folding)." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)
"God has put a secret art into the forces of Nature so as to enable it to fashion itself out of chaos into a perfect world system." (Immanuel Kant)
"Science, like art, music and poetry, tries to reduce chaos to the clarity and order of pure beauty." (Detlev W Bronk)
"God has put a secret art into the forces of Nature so as to enable it to fashion itself out of chaos into a perfect world system." (Immanuel Kant)
"Science, like art, music and poetry, tries to reduce chaos to the clarity and order of pure beauty." (Detlev W Bronk)
No comments:
Post a Comment