31 May 2020

Jay W Forrester - Collected Quotes

"Negative feedback is the form normally encountered in the control of physical systems. Yet, positive feedback dominates in the growth and decline patterns of social systems." (Jay W Forrester, "Modeling the Dynamic Processes of Corporate Growth", 1964)

"Our social systems are highly nonlinear. It seems likely that such nonlinearities, coupled with the unstable tendencies caused by amplifications and time delays, create the characteristic modes of behavior […]" (Jay W Forrester, "Modeling the Dynamic Processes of Corporate Growth", 1964)

"[The engineer] must identify the significant and critical problems, but in his education, problems have been predetermined and assigned. He must develop the judgment to know what solutions to problems are possible, but in school the problems encountered are known to have answers." (Jay W Forrester, "Engineering Education and Engineering Practice in the Year 2000", 1967)

"Formulating a model of a system should start from the question 'Where is the boundary, that encompasses the smallest number of components, within which the dynamic behavior under study is generated?'" (Jay W Forrester, "Principles of Systems", 1968)

"[…] complex systems are counterintuitive. That is, they give indications that suggest corrective action which will often be ineffective or even adverse in its results." (Jay W Forrester, "Urban Dynamics", 1969)

"Nonlinear coupling allows one feedback loop to dominate the system for a time and then cause this dominance to shift to another part of the system where behavior is so different that the two seem unrelated." (Jay W. Forrester, "Urban Dynamics", 1969)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay  Forrester, "Urban dynamics", 1969)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non‐linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive‐feedback loops describing growth processes as well as negative, goal‐seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"To model the dynamic behavior of a system, four hierarchies of structure should be recognized: closed boundary around the system; feedback loops as the basic structural elements within the boundary; level variables representing accumulations within the feedback loops; rate variables representing activity within the feedback loops." (Jay W Forrester, "Urban Dynamics", 1969)

"Each of us uses models constantly. Every person in his private life and in his business life instinctively uses models for decision making. The mental image of the world around you which you carry in your head is a model. […] A mental image is a model. All our decisions are taken on the basis of models." (Jay W Forrester, "Counter-Intuitive Behaviour of Social Systems", Technological Review 73, 1971)

"Mental models are fuzzy, incomplete, and imprecisely stated. Furthermore, within a single individual, mental models change with time, even during the flow of a single conversation. The human mind assembles a few relationships to fit the context of a discussion. As debate shifts, so do the mental models. Even when only a single topic is being discussed, each participant in a conversation employs a different mental model to interpret the subject. Fundamental assumptions differ but are never brought into the open. […] A mental model may be correct in structure and assumptions but, even so, the human mind - either individually or as a group consensus - is apt to draw the wrong implications for the future." (Jay W Forrester, "Counterintuitive Behaviour of Social Systems", Technology Review, 1971)

"A model for simulating dynamic system behavior requires formal policy descriptions to specify how individual decisions are to be made. Flows of information are continuously converted into decisions and actions. No plea about the inadequacy of our understanding of the decision-making processes can excuse us from estimating decision-making criteria. To omit a decision point is to deny its presence - a mistake of far greater magnitude than any errors in our best estimate of the process." (Jay W Forrester, "Policies, decisions and information sources for modeling", 1994)

"First, social systems are inherently insensitive to most policy changes that people choose in an effort to alter the behavior of systems. In fact, social systems draw attention to the very points at which an attempt to intervene will fail. Human intuition develops from exposure to simple systems. In simple systems, the cause of a trouble is close in both time and space to symptoms of the trouble. If one touches a hot stove, the burn occurs here and now; the cause is obvious. However, in complex dynamic systems, causes are often far removed in both time and space from the symptoms. True causes may lie far back in time and arise from an entirely different part of the system from when and where the symptoms occur. However, the complex system can mislead in devious ways by presenting an apparent cause that meets the expectations derived from simple systems."(Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"Second, social systems seem to have a few sensitive influence points through which behavior can be changed. These high-influence points are not where most people expect. Furthermore, when a high-influence policy is identified, the chances are great that a person guided by intuition and judgment will alter the system in the wrong direction." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"System dynamics models are not derived statistically from time-series data. Instead, they are statements about system structure and the policies that guide decisions. Models contain the assumptions being made about a system. A model is only as good as the expertise which lies behind its formulation. A good computer model is distinguished from a poor one by the degree to which it captures the essence of a system that it represents. Many other kinds of mathematical models are limited because they will not accept the multiple-feedback-loop and nonlinear nature of real systems." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"Third, social systems exhibit a conflict between short-term and long-term consequences of a policy change. A policy that produces improvement in the short run is usually one that degrades a system in the long run. Likewise, policies that produce long-run improvement may initially depress behavior of a system. This is especially treacherous. The short run is more visible and more compelling. Short-run pressures speak loudly for immediate attention. However, sequences of actions all aimed at short-run improvement can eventually burden a system with long-run depressants so severe that even heroic short-run measures no longer suffice. Many problems being faced today are the cumulative result of short-run measures taken in prior decades." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W. Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Models are present in everything we do. One does not have a family or corporation in one's head. Instead, one has observations about those systems. Such observations and assumptions constitute mental models, which are then used as the basis for action. System dynamics models have little impact unless they change the way people perceive a situation. They must relate to and improve mental models if they are to fill an effective role." (Jay W. Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"System dynamics models have little impact unless they change the way people perceive a situation. A model must help to organize information in a more understandable way. A model should link the past to the present by showing how present conditions arose, and extend the present into persuasive alternative futures under a variety of scenarios determined by policy alternatives. In other words, a system dynamics model, if it is to be effective, must communicate with and modify the prior mental models. Only people's beliefs - that is, their mental models - will determine action. Computer models must relate to and improve mental models if the computer models are to fill an effective role." (Jay W. Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...