30 June 2020

On Ecology VI

"Ecology is the scientific study of the interactions that determine the distribution and abundance of organisms." (Charles J Krebs, "Ecology", 1972)

"Ecology, on the other hand, is messy. We cannot find anything deserving of the term law, not because ecology is less developed than physics, but simply because the underlying phenomena are more chaotic and hence less amenable to description via generalization." (Lev Ginzburg & Mark Colyvan," Ecological Orbits: How Planets Move and Populations Grow", 2004)

"Limiting factors in population dynamics play the role in ecology that friction does in physics. They stop exponential growth, not unlike the way in which friction stops uniform motion. Whether or not ecology is more like physics in a viscous liquid, when the growth-rate-based traditional view is sufficient, is an open question. We argue that this limit is an oversimplification, that populations do exhibit inertial properties that are noticeable. Note that the inclusion of inertia is a generalization - it does not exclude the regular rate-based, first-order theories. They may still be widely applicable under a strong immediate density dependence, acting like friction in physics." (Lev Ginzburg & Mark Colyvan, "Ecological Orbits: How Planets Move and Populations Grow", 2004)

"An ecology provides the special formations needed by organizations. Ecologies are: loose, free, dynamic, adaptable, messy, and chaotic. Innovation does not arise through hierarchies. As a function of creativity, innovation requires trust, openness, and a spirit of experimentation - where random ideas and thoughts can collide for re-creation." (George Siemens, "Knowing Knowledge", 2006)

"Knowledge flow can be likened to a river that meanders through the ecology of an organization. In certain areas, the river pools and in other areas it ebbs. The health of the learning ecology of the organization depends on effective nurturing of flow." (George Siemens, "Knowing Knowledge", 2006)

"[ecology:] the scientific study of the distribution and abundance of organisms and the interactions that determine distribution and abundance." (Michael Begon et al, "Ecology: From individuals to ecosystems", 2006)

"The living world can be viewed as a biological hierarchy that starts with subcellular particles, and continues up through cells, tissues and organs. Ecology deals with the next three levels: the individual organism, the population (consisting of individuals of the same species) and the community (consisting of a greater or lesser number of species populations). At the level of the organism, ecology deals with how individuals are affected by (and how they affect) their environment. At the level of the population, ecology is concerned with the presence or absence of particular species, their abundance or rarity, and with the trends and fluctuations in their numbers. Community ecology then deals with the composition and organization of ecological communities." (Michael Begon et al, "Ecology: From individuals to ecosystems", 2006)

"In ecology, we are often interested in exploring the behavior of whole systems of species or ecosystem composed of individual components which interact through biological processes. We are interested not simply in the dynamics of each species or component in isolation, but the dynamics of each species or component in the context of all the others and how those coupled dynamics account for properties of the system as a whole, such as its persistence. This is what people seem to mean when they say that ecology is ‘holistic’, an otherwise rather vague term." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"Much of what we deal with in ecology are rates of change of biological objects: growth of an organism, decay of a dead leaf, fluctuations in populations, accumulation or erosion of soil, increases or decreases in lake levels, etc. But rates of change are some of the hardest things to measure. What we measure are static properties such as the sizes of objects at different times and then infer that change has taken place between those two measurements." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

"Therefore, mathematical ecology does not deal directly with natural objects. Instead, it deals with the mathematical objects and operations we offer as analogs of nature and natural processes. These mathematical models do not contain all information about nature that we may know, but only what we think are the most pertinent for the problem at hand. In mathematical modeling, we have abstracted nature into simpler form so that we have some chance of understanding it. Mathematical ecology helps us understand the logic of our thinking about nature to help us avoid making plausible arguments that may not be true or only true under certain restrictions. It helps us avoid wishful thinking about how we would like nature to be in favor of rigorous thinking about how nature might actually work." (John Pastor, "Mathematical Ecology of Populations and Ecosystems", 2008)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Science: Definitions

"By Science is understood a Knowledge acquired by, or founded on clear and self evident Principles, whence it follows that the Mathemat...