03 July 2020

Jacques Bertin - Collected Quotes

"A graphic should not only show the leaves, it should show the branches as well as the entire tree." (Jacques Bertin, "The Semiology of Graphics", 1967)

"Graphic representation constitutes one of the basic sign-systems conceived by the human mind for the purposes of storing, understanding, and communicating essential information. As a "language" for the eye, graphics benefits from the ubiquitous properties of visual perception. As a monosemic system, it forms the rational part of the world of images. […] Graphics owes its special significance to its double function as a storage mechanism and a research instrument."  (Jacques Bertin, "The Semiology of graphics" ["Semiologie Graphique"], 1967)

"The aim of the graphic is to make the relationship among previously defined sets appear." (Jacques Bertin, "The Semiology of graphics" ["Semiologie Graphique"], 1967)

"The great difference between the graphic representation of yesterday, which was poorly dissociated from the figurative image, and the graphics of tomorrow, is the disappearance of the congential fixity of the image. […] When one can superimpose, juxtapose, transpose, and permute graphic images in ways that lead to groupings and classings, the graphic image passes from the dead image, the 'illustration,' to the living image, the widely accessible research instrument it is now becoming. The graphic is no longer only the 'representation' of a final simplification, it is a point of departure for the discovery of these simplifications and the means for their justification. The graphic has become, by its manageability, an instrument for information processing." (Jacques Bertin, "The Semiology of graphics" ["Semiologie Graphique"], 1967)

"The plane is the mainstay of all graphic representation. It is so familiar that its properties seem self-evident, but the most familiar things are often the most poorly understood. The plane is homogeneous and has two dimensions. The visual consequences of these properties must be fully explored." (Jacques Bertin, "The Semiology of graphics" ["Semiologie Graphique"], 1967)

"The problem that still remains to be solved is that of the orderable matrix, that needs the use of imagination […] When the two components of a data table are orderable, the normal construction is the orderable matrix. Its permutations show the analogy and the complementary nature that exist between the algorithmic treatments and the graphical treatments." (Jacques Bertin, "The Semiology of graphics" ["Semiologie Graphique"], 1967)

"There are as many types of questions as components in the information." (Jacques Bertin, "The Semiology of graphics" ["Semiologie Graphique"], 1967)

"To analyse graphic representation precisely, it is helpful to distinguish it from musical, verbal and mathematical notations, all of which are perceived in a linear or temporal sequence. The graphic image also differs from figurative representation essentially polysemic, and from the animated image, governed by the laws of cinematographic time. Within the boundaries of graphics fall the fields of networks, diagrams and maps. The domain of graphic imagery ranges from the depiction of atomic structures to the representation of galaxies and extends into the spheres of topography and cartography." (Jacques Bertin, "The Semiology of graphics" ["Semiologie Graphique"], 1967)

"As with any graphic, networks are used in order to discover pertinent troups of to inform others of the groups and structures dis(Jacques Bertin, "The Semiology of graphics" ["Semiologie Graphique"], 1967)overed. It is a good means of displaying structures, However, it ceases to be a means of discovery when the elements are numerous. The figure rapidly becomes complex, illegible and untransformable." (Jacques Bertin, "Graphics and graphic information processing", 1977)

"Computers are able to multiply useless images without taking into account that, by definition, every graphic corresponds to a table. This table allows you to think about three basic questions that go from the particular to the general level. When this last one receives an answer, you have answers for all of them. Understanding means accessing the general level and discovering significant grouping (patterns). Consequently, the function of a graphic is answering the three following questions:
Which are the X,Y, Z components of the data table? (What it’s all about?)
What are the groups in X, in Y that Z builds? (What the information at the general level is?
What are the exceptions?
These questions can be applied to every kind of problem. They measure the usefulness of whatever construction or graphical invention allowing you to avoid useless graphics." (Jacques Bertin, [interview] 2003)

"Data is transformed into graphics to understand. A map, a diagram are documents to be interrogated. But understanding means integrating all of the data. In order to do this it’s necessary to reduce it to a small number of elementary data. This is the objective of the 'data treatment' be it graphic or mathematic." (Jacques Bertin, [interview] 2003)

"The use of computers shouldn't ignore the objectives of graphics, that are: (1) Treating data to get information. (2) Communicating, when necessary, the information obtained." (Jacques Bertin, [interview] 2003)

"Graphics is the visual means of resolving logical problems." (Jacques Bertin, "Graphics and Graphic Information Processing", 2011)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...