30 October 2021

On Intelligence (2000-2009)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Just what valuable insights do ants, bees, and other social insects hold? Consider termites. Individually, they have meager intelligence. And they work with no supervision. Yet collectively they build mounds that are engineering marvels, able to maintain ambient temperature and comfortable levels of oxygen and carbon dioxide even as the nest grows. Indeed, for social insects teamwork is largely self-organized, coordinated primarily through the interactions of individual colony members. Together they can solve difficult problems (like choosing the shortest route to a food source from myriad possible pathways) even though each interaction might be very simple (one ant merely following the trail left by another). The collective behavior that emerges from a group of social insects has been dubbed 'swarm intelligence'." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Through self-organization, the behavior of the group emerges from the collective interactions of all the individuals. In fact, a major recurring theme in swarm intelligence (and of complexity science in general) is that even if individuals follow simple rules, the resulting group behavior can be surprisingly complex - and remarkably effective. And, to a large extent, flexibility and robustness result from self-organization." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Ecological rationality uses reason – rational reconstruction – to examine the behavior of individuals based on their experience and folk knowledge, who are ‘naïve’ in their ability to apply constructivist tools to the decisions they make; to understand the emergent order in human cultures; to discover the possible intelligence embodied in the rules, norms and institutions of our cultural and biological heritage that are created from human interactions but not by deliberate human design. People follow rules without being able to articulate them, but they can be discovered." (Vernon L Smith, "Constructivist and ecological rationality in economics",  2002)

"But intelligence is not just a matter of acting or behaving intelligently. Behavior is a manifestation of intelligence, but not the central characteristic or primary definition of being intelligent. A moment's reflection proves this: You can be intelligent just lying in the dark, thinking and understanding. Ignoring what goes on in your head and focusing instead on behavior has been a large impediment to understanding intelligence and building intelligent machines." (Jeff Hawkins, "On Intelligence", 2004)

"[…] recent researchers in artificial intelligence and computational methods use the term swarm intelligence to name collective and distributed techniques of problem solving without centralized control or provision of a global model. […] the intelligence of the swarm is based fundamentally on communication. […] the member of the multitude do not have to become the same or renounce their creativity in order to communicate and cooperate with each other. They remain different in terms of race, sex, sexuality and so forth. We need to understand, then, is the collective intelligence that can emerge from the communication and cooperation of such varied multiplicity." (Antonio Negri, "Multitude: War and Democracy in the Age of Empire", 2004)

"Many ants, all obeying simple rules, create the order that we see in an ant colony. This is an example of what has come to be known as swarm intelligence: behaviour or design that emerges out of simple responses by many individuals. Understanding how this happens is important in designing systems of components that have to coordinate their behaviour to achieve a desired result. Knowledge of the way order emerges in an ant colony, for instance, has been applied to create the so-called ant sort algorithm, which is used in contexts where items need to be sorted constantly, without any knowledge of the overall best plan." (David G Green, "The Serendipity Machine: A voyage of discovery through the unexpected world of computers", 2004)

"The most familiar example of swarm intelligence is the human brain. Memory, perception and thought all arise out of the nett actions of billions of individual neurons. As we saw earlier, artificial neural networks (ANNs) try to mimic this idea. Signals from the outside world enter via an input layer of neurons. These pass the signal through a series of hidden layers, until the result emerges from an output layer. Each neuron modifies the signal in some simple way. It might, for instance, convert the inputs by plugging them into a polynomial, or some other simple function. Also, the network can learn by modifying the strength of the connections between neurons in different layers." (David G Green, "The Serendipity Machine: A voyage of discovery through the unexpected world of computers", 2004)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

"It is not only a metaphor to transform the Internet to a superbrain with self-organizing features of learning and adapting. Information retrieval is already realized by neural networks adapting to the information preferences of a human user with synaptic plasticity. In sociobiology, we can 1 earn from populations of ants and termites how to organize traffic and information processing by swarm intelligence. From a technical point of view, we need intelligent programs distributed in the nets. There are already more or less intelligent virtual organisms {'agents'), learning, self-organizing and adapting to our individual preferences of information, to select our e-mails, to prepare economic transactions or to defend the attacks of hostile computer viruses, like the immune system of our body." (Klaus Mainzer, "Complexity Management in the Age of Globalization", 2006)

"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." ("Swarm Intelligence in Data Mining", Ed. Ajith Abraham et al, 2006)

"How is it that an ant colony can organize itself to carry out the complex tasks of food gathering and nest building and at the same time exhibit an enormous degree of resilience if disrupted and forced to adapt to changing situations? Natural systems are able not only to survive, but also to adapt and become better suited to their environment, in effect optimizing their behavior over time. They seemingly exhibit collective intelligence, or swarm intelligence as it is called, even without the existence of or the direction provided by a central authority." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach [...]. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach discussed later in this chapter. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed. (Michael J North & Charles M Macal, Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation, 2007)

"Swarm intelligence is sometimes also referred to as mob intelligence. Swarm intelligence uses large groups of agents to solve complicated problems. Swarm intelligence uses a combination of accumulation, teamwork, and voting to produce solutions. Accumulation occurs when agents contribute parts of a solution to a group. Teamwork occurs when different agents or subgroups of agents accidentally or purposefully work on different parts of a large problem. Voting occurs when agents propose solutions or components of solutions and the other agents vote explicitly by rating the proposal’s quality or vote implicitly by choosing whether to follow the proposal." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)

"Collective Intelligence (CI) is the capacity of human collectives to engage in intellectual cooperation in order to create, innovate, and invent." (Pierre Levy, "Toward a Self-referential Collective Intelligence", 2009)

"The brain and its cognitive mental processes are the biological foundation for creating metaphors about the world and oneself. Artificial intelligence, human beings’ attempt to transcend their biology, tries to enter into these scenarios to learn how they function. But there is another metaphor of the world that has its own particular landscapes, inhabitants, and laws. The brain provides the organic structure that is necessary for generating the mind, which in turn is considered a process that results from brain activity." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...