05 August 2022

On Certainty (2000-)

"Information entropy has its own special interpretation and is defined as the degree of unexpectedness in a message. The more unexpected words or phrases, the higher the entropy. It may be calculated with the regular binary logarithm on the number of existing alternatives in a given repertoire. A repertoire of 16 alternatives therefore gives a maximum entropy of 4 bits. Maximum entropy presupposes that all probabilities are equal and independent of each other. Minimum entropy exists when only one possibility is expected to be chosen. When uncertainty, variety or entropy decreases it is thus reasonable to speak of a corresponding increase in information." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001) 

"In fact, H [entropy] measures the amount of uncertainty that exists in the phenomenon. If there were only one event, its probability would be equal to 1, and H would be equal to 0 - that is, there is no uncertainty about what will happen in a phenomenon with a single event because we always know what is going to occur. The more events that a phenomenon possesses, the more uncertainty there is about the state of the phenomenon. In other words, the more entropy, the more information." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The storytelling mind is allergic to uncertainty, randomness, and coincidence. It is addicted to meaning. If the storytelling mind cannot find meaningful patterns in the world, it will try to impose them. In short, the storytelling mind is a factory that churns out true stories when it can, but will manufacture lies when it can't." (Jonathan Gottschall, "The Storytelling Animal: How Stories Make Us Human", 2012)

"The data is a simplification - an abstraction - of the real world. So when you visualize data, you visualize an abstraction of the world, or at least some tiny facet of it. Visualization is an abstraction of data, so in the end, you end up with an abstraction of an abstraction, which creates an interesting challenge. […] Just like what it represents, data can be complex with variability and uncertainty, but consider it all in the right context, and it starts to make sense." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos", 2013)

"We have minds that are equipped for certainty, linearity and short-term decisions, that must instead make long-term decisions in a non-linear, probabilistic world." (Paul Gibbons, "The Science of Successful Organizational Change", 2015)

"The greater the uncertainty, the bigger the gap between what you can measure and what matters, the more you should watch out for overfitting - that is, the more you should prefer simplicity." (Brian Christian & Thomas L Griffiths, "Algorithms to Live By: The Computer Science of Human Decisions", 2016)

"A notable difference between many fields and data science is that in data science, if a customer has a wish, even an experienced data scientist may not know whether it’s possible. Whereas a software engineer usually knows what tasks software tools are capable of performing, and a biologist knows more or less what the laboratory can do, a data scientist who has not yet seen or worked with the relevant data is faced with a large amount of uncertainty, principally about what specific data is available and about how much evidence it can provide to answer any given question. Uncertainty is, again, a major factor in the data scientific process and should be kept at the forefront of your mind when talking with customers about their wishes."  (Brian Godsey, "Think Like a Data Scientist", 2017)

"The elements of this cloud of uncertainty (the set of all possible errors) can be described in terms of probability. The center of the cloud is the number zero, and elements of the cloud that are close to zero are more probable than elements that are far away from that center. We can be more precise in this definition by defining the cloud of uncertainty in terms of a mathematical function, called the probability distribution." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Uncertainty is an adversary of coldly logical algorithms, and being aware of how those algorithms might break down in unusual circumstances expedites the process of fixing problems when they occur - and they will occur. A data scientist’s main responsibility is to try to imagine all of the possibilities, address the ones that matter, and reevaluate them all as successes and failures happen." (Brian Godsey, "Think Like a Data Scientist", 2017)

"Entropy is a measure of amount of uncertainty or disorder present in the system within the possible probability distribution. The entropy and amount of unpredictability are directly proportional to each other." (G Suseela & Y Asnath V Phamila, "Security Framework for Smart Visual Sensor Networks", 2019)

"Estimates based on data are often uncertain. If the data were intended to tell us something about a wider population (like a poll of voting intentions before an election), or about the future, then we need to acknowledge that uncertainty. This is a double challenge for data visualization: it has to be calculated in some meaningful way and then shown on top of the data or statistics without making it all too cluttered." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...