11 March 2023

On Fractals IV

"Fractal geometry will make you see everything differently. There is danger in reading further. You risk the loss of your childhood vision of clouds, forests, flowers, galaxies, leaves, feathers, rocks, mountains, torrents of water, carpets, bricks, and much else besides. Never again will your interpretation of these things be quite the same." (Michael F Barnsley, "Fractals Everywhere" 1988)

"Very often a strange attractor is a fractal object, whose geometric structure is invariant under the time evolution maps."  (David Ruelle, "Chaotic Evolution and Strange Attractors: The statistical analysis of time series for deterministic nonlinear systems", 1989)

"The unifying concept underlying fractals, chaos, and power laws is self-similarity. Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one of the decisive symmetries that shape our universe and our efforts to comprehend it." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] the world is not complete chaos. Strange attractors often do have structure: like the Sierpinski gasket, they are self-similar or  approximately so. And they have fractal dimensions that hold important clues for our attempts to understand chaotic systems such as the weather." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"First, strange attractors look strange: they are not smooth curves or surfaces but have 'non-integer dimension' - or, as Benoit Mandelbrot puts it, they are fractal objects. Next, and more importantly, the motion on a strange attractor has sensitive dependence on initial condition. Finally, while strange attractors have only finite dimension, the time-frequency analysis reveals a continuum of frequencies." (David Ruelle, "Chance and Chaos", 1991)

"[…] chaos and fractals are part of an even grander subject known as dynamics. This is the subject that deals with change, with systems that evolve in time. Whether the system in question settles down to equilibrium, keeps repeating in cycles, or does something more complicated, it is dynamics that we use to analyze the behavior." (Steven H Strogatz, "Non-Linear Dynamics and Chaos, 1994)

"What is renormalization? First of all, if scaling is present we can go to smaller scales and get exactly the same result. In a sense we are looking at the system with a microscope of increasing power. If you take the limit of such a process you get a stability that is not otherwise present. In short, in the renormalized system, the self-similarity is exact, not approximate as it usually is. So renormalization gives stability and exactness." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Mathematics is sometimes described as the science which generates eternal notions and concepts for the scientific method: derivatives‚ continuity‚ powers‚ logarithms are examples. The notions of chaos‚ fractals and strange attractors are not yet mathematical notions in that sense‚ because their final definitions are not yet agreed upon." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science", 2004)

"In the telephone system a century ago, messages dispersed across the network in a pattern that mathematicians associate with randomness. But in the last decade, the flow of bits has become statistically more similar to the patterns found in self-organized systems. For one thing, the global network exhibits self-similarity, also known as a fractal pattern. We see this kind of fractal pattern in the way the jagged outline of tree branches look similar no matter whether we look at them up close or far away. Today messages disperse through the global telecommunications system in the fractal pattern of self-organization." (Kevin Kelly, "What Technology Wants", 2010)

"The theory of fractality is of importance from two distinct but related points of view: its origins and its results. Fractals are the fruit of the breaking down of traditional thought and philosophy that had governed mathematics and the sciences for centuries. They in turn had a revolutionary effect on diverse  sciences, mathematics, thought and arts in a very short period  of time. They upended linear philosophical conceptions of true or false, high or low, ordered or disordered, beautiful or ugly." (Mehrdad Garousi, "The Postmodern Beauty of Fractals", Leonardo Vol. 45 (1), 2012)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...