12 March 2023

On Heuristics IV

"Design problems - generating or discovering alternatives - are complex largely because they involve two spaces, an action space and a state space, that generally have completely different structures. To find a design requires mapping the former of these on the latter. For many, if not most, design problems in the real world systematic algorithms are not known that guarantee solutions with reasonable amounts of computing effort. Design uses a wide range of heuristic devices - like means-end analysis, satisficing, and the other procedures that have been outlined - that have been found by experience to enhance the efficiency of search. Much remains to be learned about the nature and effectiveness of these devices." (Herbert A Simon, "The Logic of Heuristic Decision Making", [in "The Logic of Decision and Action"], 1966)

"Heuristics are rules of thumb that help constrain the problem in certain ways (in other words they help you to avoid falling back on blind trial and error), but they don't guarantee that you will find a solution. Heuristics are often contrasted with algorithms that will guarantee that you find a solution - it may take forever, but if the problem is algorithmic you will get there. However, heuristics are also algorithms." (S Ian Robertson, "Problem Solving", 2001)

"A heuristic is defined as a simple rule that exploits both evolved abilities to act fast and struc- tures of the environment to act accurately and frugally. The complexity and uncertainty of an environment cannot be determined independently of the actor. What matters is the degree of complexity and uncertainty encountered by the decision maker." (Christoph Engel & Gerd Gigerenzer, "Law and Heuristics: An interdisciplinary venture" [in "Heuristics and the Law", 2006)

"Heuristics are needed in situations where the world does not permit optimization. For many real-world problems (as opposed to optimization-tuned textbook problems), optimal solutions are unknown because the problems are computationally intractable or poorly defined." (Christoph Engel & Gerd Gigerenzer, "Law and Heuristics: An interdisciplinary venture" [in "Heuristics and the Law", 2006)

"Perception and memory are imprecise filters of information, and the way in which information is presented, that is, the frame, influences how it is received. Because too much information is difficult to deal with, people have developed shortcuts or heuristics in order to come up with reasonable decisions. Unfortunately, sometimes these heuristics lead to bias, especially when used outside their natural domains." (Lucy F Ackert & Richard Deaves, "Behavioral Finance: Psychology, Decision-Making, and Markets", 2010)

"A rule of thumb, or heuristic, enables us to make a decision fast, without much searching for information, but nevertheless with high accuracy. [...] A heuristic can be safer and more accurate than a calculation, and the same heuristic can underlie both conscious and unconscious decisions." (Gerd Gigerenzer, "Risk Savvy: How to make good decisions", 2014)

"A heuristic is a strategy that ignores part of the information, with the goal of making decisions more quickly, frugally, and/or accurately than more complex methods." (Gerd Gigerenzer et al, "Simply Rational: Decision Making in the Real World", 2015)

"Probability theory is not the only tool for rationality. In situations of uncertainty, as opposed to risk, simple heuristics can lead to more accurate judgments, in addition to being faster and more frugal. Under uncertainty, optimal solutions do not exist (except in hindsight) and, by definition, cannot be calculated. Thus, it is illusory to model the mind as a general optimizer, Bayesian or otherwise. Rather, the goal is to achieve satisficing solutions, such as meeting an aspiration level or coming out ahead of a competitor."  (Gerd Gigerenzer et al, "Simply Rational: Decision Making in the Real World", 2015)

"Judgments made in difficult circumstances can be based on a limited number of simple, rapidly-arrived-at rules ('heuristics'), rather than formal, extensive algorithmic calculus and programs. Often, even complex problems can be solved quickly and accurately using such 'quick and dirty' heuristics. However, equally often, such heuristics can be beset by systematic errors or biases." (Jérôme Boutang & Michel De Lara, "The Biased Mind", 2016)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...