06 October 2024

On Construction VIII: Science

"Science gains from it [the pendulum] more than one can expect. With its huge dimensions, the apparatus presents qualities that one would try in vain to communicate by constructing it on a small [scale], no matter how carefully. Already the regularity of its motion promises the most conclusive results. One collects numbers that, compared with the predictions of theory, permit one to appreciate how far the true pendulum approximates or differs from the abstract system called 'the simple pendulum'." (Jean-Bernard-Léon Foucault, "Demonstration Experimentale du Movement de Rotation de la Terre", 1851)

"The invention of a new symbol is a step in the advancement of civilisation. Why were the Greeks, in spite of their penetrating intelligence and their passionate pursuit of Science, unable to carry Mathematics farther than they did? and why, having formed the conception of the Method of Exhaustions, did they stop short of that of the Differential Calculus? It was because they had not the requisite symbols as means of expression. They had no Algebra. Nor was the place of this supplied by any other symbolical language sufficiently general and flexible; so that they were without the logical instruments necessary to construct the great instrument of the Calculus." (George H Lewes "Problems of Life and Mind", 1873)

"We shall call this universal organizational science the 'Tektology'. The literal translation of this word from the Greek is 'the theory of construction'. 'Construction' is the most generaI and suitable synonym for the modern concept of 'organization'. [...] The aim of tektology is to systematize organizational experience; this science is clearly empirical and should draw its conclusions by way of induction." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"It would be a mistake to suppose that a science consists entirely of strictly proved theses, and it would be unjust to require this. […] Science has only a few apodeictic propositions in its catechism: the rest are assertions promoted by it to some particular degree of probability. It is actually a sign of a scientific mode of thought to find satisfaction in these approximations to certainty and to be able to pursue constructive work further in spite of the absence of final confirmation." (Sigmund Freud, "Introductory Lectures on Psycho-Analysis", 1916)

"Science is a magnificent force, but it is not a teacher of morals. It can perfect machinery, but it adds no moral restraints to protect society from the misuse of the machine. It can also build gigantic intellectual ships, but it constructs no moral rudders for the control of storm tossed human vessel. It not only fails to supply the spiritual element needed but some of its unproven hypotheses rob the ship of its compass and thus endangers its cargo." (William J Bryan, "Undelivered Trial Summation Scopes Trial", 1925)

"Science aims at constructing a world which shall be symbolic of the world of commonplace experience." (Sir Arthur S Eddington, "The Nature of the Physical World", 1928)

"No doctrinal system in physical science, or indeed perhaps in any science, will alter its content of its own accord. Here we always need the pressure of outer circumstances. Indeed the more intelligible and comprehensive a theoretical system is the more obstinately it will resist all attempts at reconstruction or expansion." (Max Planck, "Where is Science Going?", 1932)

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"Mathematics as an expression of the human mind reflects the active will, the contemplative reason, and the desire for aesthetic perfection. Its basic elements are logic and intuition, analysis and construction, generality and individuality. Though different traditions may emphasize different aspects, it is only the interplay of these antithetic forces and the struggle for their synthesis that constitute the life, usefulness, and supreme value of mathematical science." (Richard Courant & Herbert Robbins, "What Is Mathematics?", 1941)

"A theoretical science unaware that those of its constructs considered relevant and momentous are destined eventually to be framed in concepts and words that have a grip on the educated community and become part and parcel of the general world picture - a theoretical science [...]" (Erwin Schrödinger, "Are There Quantum Jumps?", The British Journal for the Philosophy of Science Vol. 3, 1952)

"[...] sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work - that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain aesthetic criteria - that is, in relation to how much it describes, it must be rather simple." (John von Neumann, "Method in the physical sciences", 1955)

"We realize, however, that all scientific laws merely represent abstractions and idealizations expressing certain aspects of reality. Every science means a schematized picture of reality, in the sense that a certain conceptual construct is unequivocally related to certain features of order in reality […]" (Ludwig von Bertalanffy, "General System Theory", 1968)

"Many people believe that reasoning, and therefore science, is a different activity from imagining. But this is a fallacy […] Reasoning is constructed with movable images just as certainly as poetry is." (Jacob Bronowski, "Visionary Eye", 1978)

"[…] the pursuit of science is more than the pursuit of understanding. It is driven by the creative urge, the urge to construct a vision, a map, a picture of the world that gives the world a little more beauty and coherence than it had before." (John A Wheeler, "Geons, Black Holes, and Quantum Foam: A Life in Physics", 1998)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...