16 November 2024

On Hypothesis Testing I

"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)

"The peculiarity of [...] statistical hypotheses is that they are not conclusively refutable by any experience." (Richard B Braithwaite, "Scientific Explanation: A Study of the Function of Theory, Probability and Law in Science", 1953)

"Tests of the null hypothesis that there is no difference between certain treatments are often made in the analysis of agricultural or industrial experiments in which alternative methods or processes are compared. Such tests are [...] totally irrelevant. What are needed are estimates of magnitudes of effects, with standard errors." (Francis J Anscombe, "Discussion on Dr. David’s and Dr. Johnson’s Paper", Journal of the Royal Statistical Society B 18, 1956)

"[...] the tests of null hypotheses of zero differences, of no relationships, are frequently weak, perhaps trivial statements of the researcher’s aims [...] in many cases, instead of the tests of significance it would be more to the point to measure the magnitudes of the relationships, attaching proper statements of their sampling variation. The magnitudes of relationships cannot be measured in terms of levels of significance." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"In view of our long-term strategy of improving our theories, our statistical tactics can be greatly improved by shifting emphasis away from over-all hypothesis testing in the direction of statistical estimation. This always holds true when we are concerned with the actual size of one or more differences rather than simply in the existence of differences." (David A Grant, "Testing the null hypothesis and the strategy and tactics of investigating theoretical models", Psychological Review 69, 1962)

"[...] we need to get on with the business of generating [...] hypotheses and proceed to do investigations and make inferences which bear on them, instead of [...] testing the statistical null hypothesis in any number of contexts in which we have every reason to suppose that it is false in the first place." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"All testing, all confirmation and disconfirmation of a hypothesis takes place already within a system. And this system is not a more or less arbitrary and doubtful point of departure for all our arguments; no it belongs to the essence of what we call an argument. The system is not so much the point of departure, as the element in which our arguments have their life." (Ludwig Wittgenstein, "On Certainty", 1969)

"Science consists simply of the formulation and testing of hypotheses based on observational evidence; experiments are important where applicable, but their function is merely to simplify observation by imposing controlled conditions." (Henry L Batten, "Evolution of the Earth", 1971)

"[...] the statistical power of many psychological studies is ridiculously low. This is a self-defeating practice: it makes for frustrated scientists and inefficient research. The investigator who tests a valid hypothesis but fails to obtain significant results cannot help but regard nature as untrustworthy or even hostile." (Amos Tversky & Daniel Kahneman, "Belief in the law of small numbers", Psychological Bulletin 76(2), 1971) 

"Decision-making problems (hypothesis testing) involve situations where it is desired to make a choice among various alternative decisions (hypotheses). Such problems can be viewed as generalized state estimation problems where the definition of state has simply been expanded." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"Hypothesis testing can introduce the need for multiple models for the multiple hypotheses and,' if appropriate, a priori probabilities. The one modeling aspect of hypothesis testing that has no estimation counterpart is the problem of specifying the hypotheses to be considered. Often this is a critical step which influences both performance arid the difficulty of implementation." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"Pattern recognition can be viewed as a special case of hypothesis testing. In pattern recognition, an observation z is to be used to decide what pattern caused it. Each possible pattern can be viewed as one hypothesis. The main problem in pattern recognition is the development of models for the z corresponding to each pattern (hypothesis)." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"The term hypothesis testing arises because the choice as to which process is observed is based on hypothesized models. Thus hypothesis testing could also be called model testing. Hypothesis testing is sometimes called decision theory. The detection theory of communication theory is a special case." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...