"So completely is nature mathematical that some of the more exact natural sciences, in particular astronomy and physics, are in their theoretic phases largely mathematical in character, while other sciences which have hitherto been compelled by the complexity of their phenomena and the inexactitude of their data to remain descriptive and empirical, are developing towards the mathematical ideal, proceeding upon the fundamental assumption that mathematical relations exist between the forces and the phenomena, and that nothing short, of the discovery and formulations of these relations would constitute definitive knowledge of the subject. Progress is measured by the closeness of the approximation to this ideal formulation." (Jacob W A Young, "The Teaching of Mathematics", 1907)
"Much of the skill of the true mathematical physicist and of the mathematical astronomer consists in the power of adapting methods and results carried out on an exact mathematical basis to obtain approximations sufficient for the purposes of physical measurements. It might perhaps be thought that a scheme of Mathematics on a frankly approximative basis would be sufficient for all the practical purposes of application in Physics, Engineering Science, and Astronomy, and no doubt it would be possible to develop, to some extent at least, a species of Mathematics on these lines. Such a system would, however, involve an intolerable awkwardness and prolixity in the statements of results, especially in view of the fact that the degree of approximation necessary for various purposes is very different, and thus that unassigned grades of approximation would have to be provided for. Moreover, the mathematician working on these lines would be cut off from the chief sources of inspiration, the ideals of exactitude and logical rigour, as well as from one of his most indispensable guides to discovery, symmetry, and permanence of mathematical form. The history of the actual movements of mathematical thought through the centuries shows that these ideals are the very life-blood of the science, and warrants the conclusion that a constant striving toward their attainment is an absolutely essential condition of vigorous growth. These ideals have their roots in irresistible impulses and deep-seated needs of the human mind, manifested in its efforts to introduce intelligibility in certain great domains of the world of thought." (Ernest W Hobson, [address] 1910)
"The belief that mathematics, because it is abstract, because it is static and cold and gray, is detached from life, is a mistaken belief. Mathematics, even in its purest and most abstract estate, is not detached from life. It is just the ideal handling of the problems of life, as sculpture may idealize a human figure or as poetry or painting may idealize a figure or a scene. Mathematics is precisely the ideal handling of the problems of life, and the central ideas of the science, the great concepts about which its stately doctrines have been built up, are precisely the chief ideas with which life must always deal and which, as it tumbles and rolls about them through time and space, give it its interests and problems, and its order and rationality. " (Cassius J Keyser, "The Humanization of the Teaching of Mathematics", 1912)
"The ideal of thought is rigor; mathematics is the name that usage employs to designate, not attainment of the ideal, for it cannot be attained, but its devoted pursuit and close approximation." (Cassius J Keyser, "The Human Worth of Rigorous Thinking: Essays and Addresses", 1916)
"The rigor of mathematics is not absolute - absolute rigor is an ideal, to be, like other ideals, aspired unto, forever approached, but never quite attained, for such attainment would mean that every possibility of error or indetermination, however slight, had been eliminated from idea, from symbol, and from argumentation." (Cassius J Keyser, "The Human Worth of Rigorous Thinking: Essays and Addresses", 1916)
"Absolute certainty is a privilege of uneducated minds and fanatics. - It is, for scientific folk, an unattainable ideal." (Cassius J Keyser, "Mathematical Philosophy: A Study of Fate and Freedom", 1922)
"The sciences bring into play the imagination, the building of images in which the reality, of the past is blended with the ideals for the future, and from the picture there springs the prescience of genius." (William J Mayo, "Contributions of Pure Science to Progressive Medicine", The Journal of the American Medical Association Vol. 84 (20), 1925)
No comments:
Post a Comment