01 September 2025

On Mathematical Reasoning

"The Reader may here observe the Force of Numbers, which can be successfully applied, even to those things, which one would imagine are subject to no Rules. There are very few things which we know, which are not capable of being reduc’d to a Mathematical Reasoning; and when they cannot it’s a sign our knowledge of them is very small and confus’d; and when a Mathematical Reasoning can be had it’s as great a folly to make use of any other, as to grope for a thing in the dark, when you have a Candle standing by you." (John Arbuthnot, "Of the Laws of Chance", 1692)

"The operations performed with imaginary characters, though destitute of meaning themselves, are yet notes of reference to others which are significant. They, point out indirectly a method of demonstrating a certain property of the hyperbola, and then leave us to conclude from analogy, that the same property belongs also to the circle. All that we are assured of by the imaginary investigation is, that its conclusion may, with all the strictness of mathematical reasoning, be proved of the hyperbola; but if from thence we would transfer that conclusion to the circle, it must be in consequence of the principle just now mentioned. The investigation therefore resolves itself ultimately into an argument from analogy; and, after the strictest examination, will be found without any other claim to the evidence of demonstration." (Robert Woodhouse," On the necessary Truth of certain Conclusions obtained by Means of imaginary Quantities", 1801)

"There is nothing physical to be learned a priori. We have no right whatever to ascertain a single physical truth without seeking for it physically, unless it be a necessary consequence of other truths already acquired by experiment, in which case mathematical reasoning is alone requisite." (Peter G Tait, "Lectures on Some Recent Advances in Physical Science, With a Special, Lecture on Force", 1876)

"[…] in the Law of Errors we are concerned only with the objective quantities about which mathematical reasoning is ordinarily exercised; whereas in the Method of Least Squares, as in the moral sciences, we are concerned with a psychical quantity - the greatest possible quantity of advantage." (Francis Y Edgeworth, "The method of least squares", 1883)

"The type of reasoning found in mathematics seems thus not only available but essentially interwoven with every inference in non-mathematical reasoning, being always used in one of its two steps ; facility in making the other step, the more difficult one, must be attained through other than purely mathematical training." (Jacob W A Young, "The Teaching of Mathematics", 1907)

"What is the nature of mathematical reasoning? Is is really deductive, as is commonly supposed? A deeper analysis shows us that it is not, that it partakes in a certain measure of the nature of inductive reasoning, and just because of this is it so fruitful. None the less does it retain its character of rigor absolute; this is the first thing that had to be shown." (Henri Poincaré, "Science and Hypothesis" [in "The Foundations of Science", 1913])

“Philosophy in its old form could exist only in the absence of engineering, but with engineering in existence and daily more active and far reaching, the old verbalistic philosophy and metaphysics have lost their reason to exist. They were no more able to understand the ‘production’ of the universe and life than they are now able to understand or grapple with 'production' as a means to provide a happier existence for humanity. They failed because their venerated method of ‘speculation’ can not produce, and its place must be taken by mathematical thinking. Mathematical reasoning is displacing metaphysical reasoning. Engineering is driving verbalistic philosophy out of existence and humanity gains decidedly thereby.” (Alfred Korzybski,  “Manhood of Humanity”, 1921)

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity. The activity of the intuition consists in making spontaneous judgements which are not the result of conscious trains of reasoning. [...] The exercise of ingenuity in mathematics consists in aiding the intuition through suitable arrangements of propositions, and perhaps geometrical figures or drawings." (Alan M Turing, "Systems of Logic Based on Ordinals", Proceedings of the London Mathematical Society Vol 45 (2), 1939)

"[...] nature seems to take advantage of the simple mathematical representations of the symmetry laws. When one pauses to consider the elegance and the beautiful perfection of the mathematical reasoning involved and contrast it with the complex and far-reaching physical consequences, a deep sense of respect for the power of the symmetry laws never fails to develop." (Chen-Ning Yang, "The Law of Parity Conservation and Other Symmetry Laws of Physics", [Nobel lecture] 1957)

"Mathematical Reasoning is not only exact; it has its own criteria of reality." (Paul K Feyerabend, “Science in a Free Society”, 1978)

"For most problems found in mathematics textbooks, mathematical reasoning is quite useful. But how often do people find textbook problems in real life? At work or in daily life, factors other than strict reasoning are often more important. Sometimes intuition and instinct provide better guides; sometimes computer simulations are more convenient or more reliable; sometimes rules of thumb or back-of-the-envelope estimates are all that is needed." (Lynn A Steen,"Twenty Questions about Mathematical Reasoning", 1999)

"In chaos theory this 'butterfly effect' highlights the extreme sensitivity of nonlinear systems at their bifurcation points. There the slightest perturbation can push them into chaos, or into some quite different form of ordered behavior. Because we can never have total information or work to an infinite number of decimal places, there will always be a tiny level of uncertainty that can magnify to the point where it begins to dominate the system. It is for this reason that chaos theory reminds us that uncertainty can always subvert our attempts to encompass the cosmos with our schemes and mathematical reasoning." (F David Peat, "From Certainty to Uncertainty", 2002)

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two faculties, which we may call intuition and ingenuity [...] (George B Dyson, "Turing's Cathedral: The Origins of the Digital Universe", 2012)

"The first things I found out were that all mathematical reasoning is diagrammatic and that all necessary reasoning is mathematical reasoning, no matter how simple it may be. By diagrammatic reasoning, I mean reasoning which constructs a diagram according to a precept expressed in general terms, performs experiments upon this diagram, notes their results, assures itself that similar experiments performed upon any diagram constructed according to the same precept would have the same results, and expresses this in general terms. This was a discovery of no little importance, showing, as it does, that all knowledge without exception comes from observation." (Charles S Peirce)

31 August 2025

On Waves (1950-1974)

 "Every object that we perceive appears in innumerable aspects. The concept of the object is the invariant of all these aspects. From this point of view, the present universally used system of concepts in which particles and waves appear simultaneously, can be completely justified. The latest research on nuclei and elementary particles has led us, however, to limits beyond which this system of concepts itself does not appear to suffice. The lesson to be learned from what I have told of the origin of quantum mechanics is that probable refinements of mathematical methods will not suffice to produce a satisfactory theory, but that somewhere in our doctrine is hidden a concept, unjustified by experience, which we must eliminate to open up the road." (Max Born, "The Statistical Interpretations of Quantum Mechanics", [Nobel lecture] 1954)

"A variety of natural phenomena exhibit what is called the minimum principle. The principle is displayed where the amount of energy expended in performing a given action is the least required for its execution, where the path of a particle or wave in moving from one point to another is the shortest possible, where a motion is completed in the shortest possible time, and so on." (James R Newman, "The World of Mathematics" Vol. II, 1956)

"The ultimate origin of the difficulty lies in the fact (or philosophical principle) that we are compelled to use words of common language when we wish to describe a phenomenon, not by logical or mathematical analysis, but by a picture appealing to the imagination. Common language has grown by everyday experience and can never surpass these limits. Classical physics has restricted itself to the use of concepts of this kind by analyzing visible motions it has developed two ways of representing them by elementary processes moving particles and waves. There is no other wav of giving a pictorial description of motions - we have to apply it even in the region of atomic process, where classical physics break down." (Max Born, "Atomic Physics", 1957)

"[...] the whole course of events is determined by the laws of probability; to a state in space there corresponds a definite probability, which is given by the de Brogile wave associated with the state." (Max Born, "Atomic Physics", 1957)

"The mathematicians and physics men Have their mythology; they work alongside the truth, Never touching it; their equations are false But the things work. Or, when gross error appears, They invent new ones; they drop the theory of waves In universal ether and imagine curved space." (Robinson Jeffers," The Beginning and the End and Other Poems, The Great Wound", 1963)

"The general notion in communication theory is that of information. In many cases, the flow of information corresponds to a flow of energy, e. g. if light waves emitted by some objects reach the eye or a photoelectric cell, elicit some reaction of the organism or some machinery, and thus convey information." (Ludwig von Bertalanffy, "General System Theory", 1968) 

"Let us consider, for a moment, the world as described by the physicist. It consists of a number of fundamental particles which, if shot through their own space, appear as waves, and are thus [...] of the same laminated structure as pearls or onions, and other wave forms called electromagnetic which it is convenient, by Occam’s razor, to consider as travelling through space with a standard velocity. All these appear bound by certain natural laws which indicate the form of their relationship." (G Spencer-Brown, "Laws of Form", 1969)

On Waves (-1949)

"It is told that those who first brought out the irrationals from concealment into the open perished in a shipwreck, to a man. For the unutterable and the formless must needs be concealed. And those who uncovered and touched this image of life were instantaneously destroyed and shall remain forever exposed to the play of the eternal waves." (Proclus Lycaeus, cca 5th century)

“The length of strings is not the direct and immediate reason behind the forms [ratios] of musical intervals, nor is their tension, nor their thickness, but rather, the ratios of the numbers of vibrations and impacts of air waves that go to strike our eardrum.” (Galileo Galilei, "Two New Sciences", 1638)

"To Nature nothing can be added; from Nature nothing can be taken away; the sum of her energies is constant, and the utmost man can do in the pursuit of physical truth, or in the applications of physical knowledge, is to shift the constituents of the never-varying total. The law of conservation rigidly excludes both creation and annihilation. Waves may change to ripples, and ripples to waves; magnitude may be substituted for number, and number for magnitude; asteroids may aggregate to suns, suns may resolve themselves into florae and faunae, and floras and faunas melt in air: the flux of power is eternally the same. It rolls in music through the ages, and all terrestrial energy - the manifestations of life as well as the display of phenomena - are but the modulations of its rhythm." (John Tyndall, "Conclusion of Heat Considered as a Mode of Motion: Being a Course of Twelve Lectures Delivered at the Royal Institution of Great Britain in the Season of 1862", 1863)

"I hold: 1) that small portions of space are, in fact, of a nature analogous to little hills on a surface that is on the average fiat; namely, that the ordinary laws of geometry are not valid in them; 2) that this property of being curved or distorted is constantly being passed on from one portion of space to another after the manner of a wave; 3) that this variation of the curvature of space is what really happens in the phenomenon that we call the motion of matter, whether ponderable or ethereal; 4) that in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870) 

"You cannot crown the edifice by this abstraction. The scientific imagination, which is here authoritative, demands as the origin and cause of a series of ether waves a particle of vibrating matter quite as definite, though it may be excessively minute, as that which gives origin to a musical sound. Such a particle we name an atom or a molecule. I think the imagination when focused so as to give definition without penumbral haze, is sure to realise this image at last." (John Tyndall, "The Scientific Use of the Imagination", 1870)

"Ask your imagination if it will accept a vibrating multiple proportion - a numerical ratio in a state of oscillation? I do not think it will. You cannot crown the edifice with this abstraction. The scientific imagination, which is here authoritative, demands, as the origin and cause of a series of ether-waves, a particle of vibrating matter quite as definite, though it may be excessively minute, as that which gives origin to a musical sound. Such a particle we name an atom or a molecule. I think the intellect, when focused so as to give definition without penumbral haze, is sure to realize this image at the last." (John Tyndall, "Fragments of Science for Unscientific People", 1871)

"For thought raised on specialization the most potent objection to the possibility of a universal organizational science is precisely its universality. Is it ever possible that the same laws be applicable to the combination of astronomic worlds and those of biological cells, of living people and the waves of the ether, of scientific ideas and quanta of energy? .. Mathematics provide a resolute and irrefutable answer: yes, it is undoubtedly possible, for such is indeed the case. Two and two homogenous separate elements amount to four such elements, be they astronomic systems or mental images, electrons or workers; numerical structures are indifferent to any element, there is no place here for specificity." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"It is not surprising that our language should be incapable of describing the processes occurring within the atoms, for, as has been remarked, it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. Furthermore, it is very difficult to modify our language so that it will be able to describe these atomic processes, for words can only describe things of which we can form mental pictures, and this ability, too, is a result of daily experience. Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme - the quantum theory - which seems entirely adequate for the treatment of atomic processes; for visualisation, however, we must content ourselves with two incomplete analogies - the wave picture and the corpuscular picture." (Werner Heisenberg, "On Quantum Physics", 1930)

"The solution of the difficulty is that the two mental pictures which experiment lead us to form - the one of the particles, the other of the waves - are both incomplete and have only the validity of analogies which are accurate only in limiting cases." (Werner Heisenberg,"On Quantum Mechanics", 1930)

On Waves (1975-1999)

"Information is carried by physical entities, such as books or sound waves or brains, but it is not itself material. Information in a living system is a feature of the order and arrangement of its parts, which arrangement provides the signs that constitute a ‘code’ or ‘language’." (John Z Young, "Programs of the Brain", 1978)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery. " (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"The truth is not in nature waiting to declare itself, and we cannot know a priori which observations are relevant and which are not; every discovery, every enlargement of the understanding begins as an imaginative preconception of what the truth might be. This imaginative preconception - a 'hypothesis' - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, the product of a blaze of insight. It comes, anyway, from within and cannot be arrived at by the exercise of any known calculus of discovery." (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"The 'complete description' that quantum theory claims the wave function to be is a description of physical reality (as in physics). No matter what we are feeling, or thinking about, or looking at, the wave function describes as completely as possible where and when we are doing it. [...] Since the wave function is thought to be a complete description of physical reality and since that which the wave function describes is idea-like as well as matter-like, then physical reality must be both idea-like and matter-like. In other words, the world cannot be as it appears. Incredible as it sounds, this is the conclusion of the orthodox view of quantum mechanics." (Gary Zukav, "The Dancing Wu Li Masters", 1979)

"So much of science consists of things we can never see: light ‘waves’ and charged ‘particles’; magnetic ‘fields’ and gravitational ‘forces’; quantum ‘jumps’ and electron ‘orbits’. In fact, none of these phenomena is literally what we say it is. Light waves do not undulate through empty space in the same way that water waves ripple over a still pond; a field is only a mathematical description of the strength and direction of a force; an atom does not literally jump from one quantum state to another, and electrons do not really travel around the atomic nucleus in orbits. The words we use are merely metaphors." (K C Cole, "On Imagining the Unseeable", Discover Magazine, 1982)

"At the most elemental level, reality evanesces into something called Schröedinger's Wave Function: a mathematical abstraction which is best represented as a pattern in an infinite-dimensional space, Hilbert Space. Each point of the Hilbert Space represents a possible state of affairs. The wave function for some one physical or mental system takes the form of, let us say, a coloring in of Hilbert Space. The brightly colored parts represent likely states for the system, the dim parts represent less probable states of affairs." (Rudy Rucker, "The Sex Sphere", 1983)

"Turning to the physical properties of the black holes, we can study them best by examining their reaction to external perturbations such as the incidence of waves of different sorts. Such studies reveal an analytic richness of the Kerr space-time which one could hardly have expected. This is not the occasion to elaborate on these technical matters. Let it suffice to say that contrary to every prior expectation, all the standard equations of mathematical physics can be solved exactly in the Kerr space-time. And the solutions predict a variety and range of physical phenomena which black holes must exhibit in their interaction with the world outside." (Subrahmanyan Chandrasekhar, "On Stars, Their Evolution, and Their Stability",[Nobel lecture] 1983)

"The world of science lives fairly comfortably with paradox. We know that light is a wave and also that light is a particle. The discoveries made in the infinitely small world of particle physics indicate randomness and chance, and I do not find it any more difficult to live with the paradox of a universe of randomness and chance and a universe of pattern and purpose than I do with light as a wave and light as a particle. Living with contradiction is nothing new to the human being." (Madeline L'Engle, "Two-Part Invention: The Story of a Marriage" , 1988)

"The view of science is that all processes ultimately run down, but entropy is maximized only in some far, far away future. The idea of entropy makes an assumption that the laws of the space-time continuum are infinitely and linearly extendable into the future. In the spiral time scheme of the timewave this assumption is not made. Rather, final time means passing out of one set of laws that are conditioning existence and into another radically different set of laws. The universe is seen as a series of compartmentalized eras or epochs whose laws are quite different from one another, with transitions from one epoch to another occurring with unexpected suddenness." (Terence McKenna, "True Hallucinations", 1989)

"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"This remarkable state of affairs [overuse of significance testing] is analogous to engineers’ teaching (and believing) that light consists only of waves while ignoring its particle characteristics - and losing in the process, of course, any motivation to pursue the most interesting puzzles and paradoxes in the field." (Geoffrey R Loftus, "On the tyranny of hypothesis testing in the social sciences", Contemporary Psychology 36, 1991)

"Einstein was thus faced with the following apparent problem. Either give up the principle of relativity, which appears to make physics possible by saying that the laws of physics are independent of where you measure them, as long as you are in a state of uniform motion; or give up Maxwell’s beautiful theory of electromagnetism and electromagnetic waves. In a truly revolutionary move, he chose to give up neither. [...] It is a testimony to his boldness and creativity not that he chose to throw out existing laws that clearly worked, but rather that he found a creative way to live within their framework. So creative, in fact, that it sounds nuts." (Lawrence M Krauss, "Fear of Physics: A Guide for the Perplexed", 1993)

"Systems that vary deterministically as time progresses, such as mathematical models of the swinging pendulum, the rolling rock, and the breaking wave, and also systems that vary with an inconsequential amount of randomness - possibly a real pendulum, rock, or wave - are technically known as dynamical systems." (Edward N Lorenz, "The Essence of Chaos", 1993)

"One reason nature pleases us is its endless use of a few simple principles: the cube-square law; fractals; spirals; the way that waves, wheels, trig functions, and harmonic oscillators are alike; the importance of ratios between small primes; bilateral symmetry; Fibonacci series, golden sections, quantization, strange attractors, path-dependency, all the things that show up in places where you don’t expect them [...] these rules work with and against each other ceaselessly at all levels, so that out of their intrinsic simplicity comes the rich complexity of the world around us. That tension - between the simple rules that describe the world and the complex world we see - is itself both simple in execution and immensely complex in effect. Thus exactly the levels, mixtures, and relations of complexity that seem to be hardwired into the pleasure centers of the human brain - or are they, perhaps, intrinsic to intelligence and perception, pleasant to anything that can see, think, create? - are the ones found in the world around us." (John Barnes, "Mother of Storms", 1994)

"How beautifully simple is Wessel’s idea. Multiplying by √-1 is, geometrically, simply a rotation by 90 degrees in the counter clockwise sense [...] Because of this property √-1 is often said to be the rotation operator, in addition to being an imaginary number. As one historian of mathematics has observed, the elegance and sheer wonderful simplicity of this interpretation suggests 'that there is no occasion for anyone to muddle himself into a state of mystic wonderment over the grossly misnamed ‘imaginaries'. This is not to say, however, that this geometric interpretation wasn’t a huge leap forward in human understanding. Indeed, it is only the start of a tidal wave of elegant calculations." (Paul J Nahin, "An Imaginary Tale: The History of √-1", 1998)


On Waves (2000-)

 "In the world of the very small, where particle and wave aspects of reality are equally significant, things do not behave in any way that we can understand from our experience of the everyday world […] all pictures are false, and there is no physical analogy we can make to understand what goes on inside atoms. Atoms behave like atoms, nothing else." (John R Gribbin, "In Search Of Schrodinger's Cat: Updated Edition", 2012)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"As the mechanical wave source moves through the medium, it pushes on a nearby segment of the material, and that segment moves away from the source and is compressed (that is, the same amount of mass is squeezed into a smaller volume, so the density of the segment increases). That segment of increased density exerts pressure on adjacent segments, and in this way a pulse (if the source gives a single push) or a harmonic wave (if the source oscillates back and forth) is generated by the source and propagates through the material." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"Before considering the wave equation for mechanical waves, you should understand the difference between the motion of individual particles and the motion of the wave itself. Although the medium is disturbed as a wave goes by, which means that the particles of the medium are displaced from their equilibrium positions, those particles don’t travel very far from their undisturbed positions. The particles oscillate about their equilibrium positions, but the wave does not carry the particles along – a wave is not like a steady breeze or an ocean current which transports material in bulk from one location to another. For mechanical waves, the net displacement of material produced by the wave over one cycle, or over one million cycles, is zero. So, if the particles aren’t being carried along with the wave, what actually moves at the speed of the wave? […] the answer is energy." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"Ironically, conventional quantum mechanics itself involves a vast expansion of physical reality, which may be enough to avoid Einstein Insanity. The equations of quantum dynamics allow physicists to predict the future values of the wave function, given its present value. According to the Schrödinger equation, the wave function evolves in a completely predictable way. But in practice we never have access to the full wave function, either at present or in the future, so this 'predictability' is unattainable. If the wave function provides the ultimate description of reality - a controversial issue!" (Frank Wilczek, "Einstein’s Parable of Quantum Insanity", 2015) 

"When you encounter the classical wave equation, it’s likely to be accompanied by some or all of the words 'linear, homogeneous, second-order partial differential equation'. You may also see the word 'hyperbolic' included in the list of adjectives. Each of these terms has a very specific mathematical meaning that’s an important property of the classical wave equation. But there are versions of the wave equation to which some of these words don’t apply, so it’s useful to spend some time understanding them." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"Quantum theory can be thought of as the science of constructing wavefunctions and extracting predictions of measurable outcomes from them. […] The wavefunction is a little bit like a map - the best possible kind of map. It encodes all that can be said about a quantum system." (Hans C von Baeyer, "QBism: The future of quantum physics", 2016)

"Basis real and imaginary numbers have eternal and necessary reality. Complex numbers do not. They are temporal and contingent in the sense that for complex numbers to exist, we first have to carry out an operation: adding basis real and imaginary numbers together. Complex numbers therefore do not exist in their own right. They are constructed. They are derived. Symmetry breaking is exactly where constructed numbers come into existence. The very act of adding a sine wave to a cosine wave is the sufficient condition to create a broken symmetry: a complex number. The 'Big Bang', mathematically, is simply where a perfect array of basis sine and cosine waves start entering into linear combinations, creating a chain reaction, an 'explosion', of complex numbers - which corresponds to the “physical” universe." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

"It is in fact mathematics itself that is simplest in hypothesis and also richest in phenomena (i.e. the simple source of all complexity). In ontological mathematics, all of existence comprises sinusoidal waves arranged into autonomous units called monads, and these are all that are required to explain everything." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

"A neural-network algorithm is simply a statistical procedure for classifying inputs (such as numbers, words, pixels, or sound waves) so that these data can mapped into outputs. The process of training a neural-network model is advertised as machine learning, suggesting that neural networks function like the human mind, but neural networks estimate coefficients like other data-mining algorithms, by finding the values for which the model’s predictions are closest to the observed values, with no consideration of what is being modeled or whether the coefficients are sensible." (Gary Smith & Jay Cordes, "The 9 Pitfalls of Data Science", 2019)

"Because of the geometry of a circle, there’s always a quarter-cycle off set between any sine wave and the wave derived from it as its derivative, its rate of change. In this analogy, the point’s direction of travel is like its rate of change. It determines where the point will go next and hence how it changes its location. Moreover, this compass heading of the arrow itself rotates in a circular fashion at a constant speed as the point goes around the circle, so the compass heading of the arrow follows a sine-wave pattern in time. And since the compass heading is like the rate of change, voilà! The rate of change follows a sine-wave pattern too." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"What is essentially different in quantum mechanics is that it deals with complex quantities (e.g. wave functions and quantum state vectors) of a special kind, which cannot be split up into pure real and imaginary parts that can be treated independently. Furthermore, physical meaning is not attached directly to the complex quantities themselves, but to some other operation that produces real numbers (e.g. the square modulus of the wave function or of the inner product between state vectors)." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)

30 August 2025

Gregory L Baker,

"All pendulums exhibit such rotation, but for most pendulums this behavior is masked by other more prominent effects. For an ideal Foucault pendulum, the plane of oscillation would be seen as fixed by an observer positioned in the stars. (In this discussion we ignore the rotation of the earth around the sun, and the rotation of the sun around the center of the galaxy, and so forth.) Therefore the earthbound observer sees a slow rotation of the plane of oscillation and it is this remarkable feature of the Foucault pendulum which demonstrates, on a large scale, the rotation of the earth." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

"For very long pendulums the spurious effects are small, and the main concern is the dissipation of energy as the pendulum gradually losses amplitude. However, for short pendulums the spurious effects are, not negligible. After the following literary divertissement, we note some ways that builders of Foucault pendulums have overcome the complicating effects of these limitations and thereby produced workable pendulums that are much smaller than Foucault’s original giant creation." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

"In theory, any earth-based pendulum is a Foucault pendulum. However, a realistic Foucault pendulum is a one that is specially constructed to highlight the rotation of its plane of oscillation due to the earth’s rotation relative to a frame of reference fixed in the stars. That is, the plane of the pendulum’s oscillation is fixed relative to the stars while the earth rotates underneath it." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

 "Pendulum clocks exemplify important physical concepts. The clock needs to have some method of transferring energy to the pendulum to maintain its oscillation. There also needs to be a method whereby the pendulum regulates the motion of the clock. These two requirements are encompassed in one remarkable mechanism called the escapement. The escapement is a marvelous invention in that it makes the pendulum clock one of the first examples of an automaton with self-regulating feedback." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

"The linearized pendulum is therefore equivalent to the spring in that they both are simple harmonic oscillators each with a single frequency and therefore a single spectral component. Occasionally we will refer to a pendulum’s equivalent oscillator or equivalent spring, and by this terminology we will mean the linearized version of that pendulum." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

Daniel Fleisch - Collected Quotes

"Among the differences that will always be with you are the small overshoots and oscillations just before and after the vertical jumps in the square waves. This is called 'Gibbs ripple' and it will cause an overshoot of about 9% at the discontinuities of the square wave no matter how many terms of the series you add. But [...] adding more terms increases the frequency of the Gibbs ripple and reduces its horizontal extent in the vicinity of the jumps." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"An understanding of complex numbers can make the study of waves consid erably less mysterious, and you probably already have an idea that complex numbers have real and imaginary parts. Unfortunately, the term 'imaginary' often leads to confusion about the nature and usefulness of complex numbers." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"As the mechanical wave source moves through the medium, it pushes on a nearby segment of the material, and that segment moves away from the source and is compressed (that is, the same amount of mass is squeezed into a smaller volume, so the density of the segment increases). That segment of increased density exerts pressure on adjacent segments, and in this way a pulse (if the source gives a single push) or a harmonic wave (if the source oscillates back and forth) is generated by the source and propagates through the material." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"Before considering the wave equation for mechanical waves, you should understand the difference between the motion of individual particles and the motion of the wave itself. Although the medium is disturbed as a wave goes by, which means that the particles of the medium are displaced from their equilibrium positions, those particles don’t travel very far from their undisturbed positions. The particles oscillate about their equilibrium positions, but the wave does not carry the particles along – a wave is not like a steady breeze or an ocean current which transports material in bulk from one location to another. For mechanical waves, the net displacement of material produced by the wave over one cycle, or over one million cycles, is zero. So, if the particles aren’t being carried along with the wave, what actually moves at the speed of the wave? […] the answer is energy." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"But the presence of √−1 (the rotation operator between the two perpendicular numbe rlines in the complex plane) in the exponent causes the expression e^ix to move from the real to the imaginary number line. As it does so, its real and imaginary parts oscillate in a sinusoidal fashion […] So the real and imaginary parts of the expression e^ix oscillate in exactly the same way as the real and imaginary components of the rotating phasor […]" (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"So a very useful way to think about i (√−1) is as an operator that produces a 90◦ rotation of any vector to which it is applied. Thus the two perpendicular number lines form the basis of what we know today as the complex plane. Unfortunately, since multiplication by √−1 is needed to get from the horizontal to the vertical number line, the numbers along the vertical number line are called 'imaginary'. We say 'unfortunately' because these numbers are every bit as real as the numbers along the horizontal number line. But the terminology is pervasive, so when you first learned about complex numbers, you probably learned that they consist of a “real” and an 'imaginary' part." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"That’s where boundary conditions come in. A boundary condition 'ties down' a function or its derivative to a specified value at a specified location in space or time. By constraining the solution of a differential equation top satisfy the boundary condition(s), you may be able to determine the value of the function or its derivatives at other locations. We say “may” because boundary conditions that are not well-posed may provide insufficient or contradictory information." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"The 'disturbance' of such waves involves three things: the longitudinal displacement of material, changes in the density of the material, and variation of the pressure within the material. So pressure waves could also be called 'density waves' or even 'longitudinal displacement waves', and when you see graphs of the wave disturbance in physics and engineering textbooks, you should make sure you understand which of these quantities is being plotted as the 'displacement' of the wave." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"The easiest way to think about the shape of a wave is to imagine taking a snapshot of the wave at some instant of time. To keep the notation simple, you can call the time at which the snapshot is taken t = 0; snapshots taken later will be timed relative to this first one. At the time of that first snapshot […] can be written as y = f(x, 0) […] Many waves maintain the same shape over time – the wave moves in the direction of propagation, but all peaks and troughs move in unison, so the shape does not change as the wave moves." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"This equation is considered by some mathematicians and physicists to be the most important equation ever devised. In Euler’s relation, both sides of the equation are expressions for a complex number on the unit circle. The left side emphasizes the magnitude (the 1 multiplying e^iθ ) and direction in the complex plane (θ), while the right side emphasizes the real (cos θ) and imaginary (sin θ) components. Another approach to demonstrating the equivalence of the two sides of Euler’s relation is to write out the power-series representation of each side; [...]" (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"When you encounter the classical wave equation, it’s likely to be accompanied by some or all of the words 'linear, homogeneous, second-order partial differential equation'. You may also see the word 'hyperbolic' included in the list of adjectives. Each of these terms has a very specific mathematical meaning that’s an important property of the classical wave equation. But there are versions of the wave equation to which some of these words don’t apply, so it’s useful to spend some time understanding them." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"Why are boundary conditions important in wave theory? One reason is this: Differential equations, by their very nature, tell you about the change in a function (or, if the equation involves second derivatives, about the change in the change of the function). Knowing how a function changes is very useful, and may be all you need in certain problems. But in many problems you wish to know not only how the function changes, but also what value the function takes on at certain locations or times." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)


29 August 2025

On Oscillations III

"Alternating positive and negative feedback produces a special form of stability represented by endless oscillation between two polar states or conditions." (John Gall, "Systemantics: The Systems Bible", 2002)

"This synergistic character of nonlinear systems is precisely what makes them so difficult to analyze. They can't be taken apart. The whole system has to be examined all at once, as a coherent entity. As we've seen earlier, this necessity for global thinking is the greatest challenge in understanding how large systems of oscillators can spontaneously synchronize themselves. More generally, all problems about self-organization are fundamentally nonlinear. So the study of sync has always been entwined with the study of nonlinearity." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"A moderate amount of noise leads to enhanced order in excitable systems, manifesting itself in a nearly periodic spiking of single excitable systems, enhancement of synchronized oscillations in coupled systems, and noise-induced stability of spatial pattens in reaction-diffusion systems." (Benjamin Lindner et al, "Effects of Noise in Excitable Systems", Physical Reports. vol. 392, 2004)

"In negative feedback regulation the organism has set points to which different parameters (temperature, volume, pressure, etc.) have to be adapted to maintain the normal state and stability of the body. The momentary value refers to the values at the time the parameters have been measured. When a parameter changes it has to be turned back to its set point. Oscillations are characteristic to negative feedback regulation […]" (Gaspar Banfalvi, "Homeostasis - Tumor – Metastasis", 2014)

"A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not closed; they spiral either toward or away from the limit cycle. If all neighboring trajectories approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit cycle is unstable, or in exceptional cases, half-stable. Stable limit cycles are very important scientifically - they model systems that exhibit self-sustained oscillations. In other words, these systems oscillate even in the absence of external periodic forcing." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"Among the differences that will always be with you are the small overshoots and oscillations just before and after the vertical jumps in the square waves. This is called 'Gibbs ripple' and it will cause an overshoot of about 9% at the discontinuities of the square wave no matter how many terms of the series you add. But [...] adding more terms increases the frequency of the Gibbs ripple and reduces its horizontal extent in the vicinity of the jumps." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"Before considering the wave equation for mechanical waves, you should understand the difference between the motion of individual particles and the motion of the wave itself. Although the medium is disturbed as a wave goes by, which means that the particles of the medium are displaced from their equilibrium positions, those particles don’t travel very far from their undisturbed positions. The particles oscillate about their equilibrium positions, but the wave does not carry the particles along – a wave is not like a steady breeze or an ocean current which transports material in bulk from one location to another. For mechanical waves, the net displacement of material produced by the wave over one cycle, or over one million cycles, is zero. So, if the particles aren’t being carried along with the wave, what actually moves at the speed of the wave? […] the answer is energy." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"But the presence of √−1 (the rotation operator between the two perpendicular numbe rlines in the complex plane) in the exponent causes the expression e^ix to move from the real to the imaginary number line. As it does so, its real and imaginary parts oscillate in a sinusoidal fashion […] So the real and imaginary parts of the expression e^ix oscillate in exactly the same way as the real and imaginary components of the rotating phasor […]" (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)

"Wessel and his fellow explorers had discovered the natural habitat of Leibniz’s ghostly amphibians: the complex plane. Once the imaginaries were pictured there, it became clear that their meaning could be anchored to a familiar thing - sideways or rotary motion - giving them an ontological heft they’d never had before. Their association with rotation also meant that they could be conceptually tied to another familiar idea: oscillation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017) 

26 August 2025

Emile Cheysson - Collected Quotes

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondence or anomalies, to find the causes, to identify the laws." (Émile Cheysson, circa 1877)

"It is this combination of observation at the foundation and geometry at the summit that I wished to express by naming this method Geometric Statistics. It cannot be subject to the usual criticisms directed at the use of pure mathematics in economic matters, which are said to be too complex to be confined within a formula." (Emile Cheysson, "La Statistique géométrique", 1888)

"It then becomes a method of graphical interpolation or extrapolation, which involves hypothetically extending a curve within or beyond the range of known data points, assuming the continuity of its pattern. In this way, one can fill in gaps in past observations and even probe the depths of the future." (Emile Cheysson, "La Statistique géométrique", 1888)

"This method is what I call Geometric Statistics. But despite its somewhat forbidding name-which I’ll explain in a moment - it is not a mathematical abstraction or a mere intellectual curiosity accessible only to a select few. It is intended, if not for all merchants and industrialists, then at least for that elite who lead the masses behind them. Practice is both its starting point and its destination. It was inspired in me more than fifteen years ago by the demands of the profession, and if I’ve decided to present it today, it’s because I’ve since verified its advantages through various applications, both in private industry and in public service." (Emile Cheysson, "La Statistique géométrique", 1888)

"Graphical statistics thus possess a variety of resources that it deploys depending on the case, in order to find the most expressive and visually appealing way to depict the phenomenon. One must especially avoid trying to convey too much at once and becoming obscure by striving for completeness. Its main virtue - or one might say, its true reason for being - is clarity. If a diagram becomes so cluttered that it loses its clarity, then it is better to use the numerical table it was meant to translate." (Emile Cheysson, "Albume de statistique graphique", 1889)

"This method not only has the advantage of appealing to the senses as well as to the intellect, and of illustrating facts and laws to the eye that would be difficult to uncover in long numerical tables. It also has the privilege of escaping the obstacles that hinder the easy dissemination of scientific work - obstacles arising from the diversity of languages and systems of weights and measures among different nations. These obstacles are unknown to drawing. A diagram is not German, English, or Italian; everyone immediately grasps its relationships of scale, area, or color. Graphical statistics are thus a kind of universal language, allowing scholars from all countries to freely exchange their ideas and research, to the great benefit of science itself." (Emile Cheysson, "Albume de statistique graphique", 1889)

"Today, there is hardly any field of human activity that does not make use of graphical statistics. Indeed, it perfectly meets a dual need of our time: the demand for information that is both rapid and precise. Graphical methods fulfill these two conditions wonderfully. They allow us not only to grasp an entire series of phenomena at a glance, but also to highlight relationships or anomalies, identify causes, and extract underlying laws. They advantageously replace long tables of numbers, so that - without compromising the precision of statistics - they broaden and popularize its benefits." (Emile Cheysson, "Albume de statistique graphique", 1889)

"When a law is contained in figures, it is buried like metal in an ore; it is necessary to extract it. This is the work of graphical representation. It points out the coincidences, the relationships between phenomena, their anomalies, and we have seen what a powerful means of control it puts in the hands of the statistician to verify new data, discover and correct errors with which they have been stained." (Emile Cheysson, "Les methods de la statistique", 1890)

Sources: Bibliothéque Nationale de la France [>>] 

25 August 2025

On Significance (2000-2009)

"When significance tests are used and a null hypothesis is not rejected, a major problem often arises - namely, the result may be interpreted, without a logical basis, as providing evidence for the null hypothesis." (David F Parkhurst, "Statistical Significance Tests: Equivalence and Reverse Tests Should Reduce Misinterpretation", BioScience Vol. 51 (12), 2001)

"If you flip a coin three times and it lands on heads each time, it's probably chance. If you flip it a hundred times and it lands on heads each time, you can be pretty sure the coin has heads on both sides. That's the concept behind statistical significance - it's the odds that the correlation (or other finding) is real, that it isn't just random chance." (T Colin Campbell, "The China Study", 2004)

"Many statistics texts do not mention this and students often ask, ‘What if you get a probability of exactly 0.05?’ Here the result would be considered not significant, since significance has been defined as a probability of less than 0.05 (<0.05). Some texts define a significant result as one where the probability is less than or equal to 0.05 ( 0.05). In practice this will make very little difference, but since Fisher proposed the ‘less than 0.05’ definition, which is also used by most scientific publications, it will be used here." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)

"The dual meaning of the word significant brings into focus the distinction between drawing a mathematical inference and practical inference from statistical results." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"A type of error used in hypothesis testing that arises when incorrectly rejecting the null hypothesis, although it is actually true. Thus, based on the test statistic, the final conclusion rejects the Null hypothesis, but in truth it should be accepted. Type I error equates to the alpha (α) or significance level, whereby the generally accepted default is 5%." (Lynne Hambleton, "Treasure Chest of Six Sigma Growth Methods, Tools, and Best Practices", 2007)

"For the study of the topology of the interactions of a complex system it is of central importance to have proper random null models of networks, i.e., models of how a graph arises from a random process. Such models are needed for comparison with real world data. When analyzing the structure of real world networks, the null hypothesis shall always be that the link structure is due to chance alone. This null hypothesis may only be rejected if the link structure found differs significantly from an expectation value obtained from a random model. Any deviation from the random null model must be explained by non-random processes." (Jörg Reichardt, "Structure in Complex Networks", 2009)

On Significance (1950-1974)

"In the examples we have given [...] our judgment whether P was small enough to justify us in suspecting a significant difference [...] has been more or less intuitive. Most people would agree [...] that a probability of .0001 is so small that the evidence is very much in favour. . . . Suppose we had obtained P = 0.1. [...] Where, if anywhere, can we draw the line? The odds against the observed event which influence a decision one way or the other depend to some extent on the caution of the investigator. Some people (not necessarily statisticians) would regard odds of ten to one as sufficient. Others would be more conservative and reserve judgment until the odds were much greater. It is a matter of personal taste." (G U Yule & M G Kendall, "An introduction to the theoryof statistics" 14th ed., 1950)

"It will, of course, happen but rarely that the proportions will be identical, even if no real association exists. Evidently, therefore, we need a significance test to reassure ourselves that the observed difference of proportion is greater than could reasonably be attributed to chance. The significance test will test the reality of the association, without telling us anything about the intensity of association. It will be apparent that we need two distinct things: (a) a test of significance, to be used on the data first of all, and (b) some measure of the intensity of the association, which we shall only be justified in using if the significance test confirms that the association is real." (Michael J Moroney, "Facts from Figures", 1951)

"The main purpose of a significance test is to inhibit the natural enthusiasm of the investigator." (Frederick Mosteller, "Selected Quantitative Techniques", 1954)

"Null hypotheses of no difference are usually known to be false before the data are collected [...] when they are, their rejection or acceptance simply reflects the size of the sample and the power of the test, and is not a contribution to science." (I Richard Savage, "Nonparametric Statistics", Journal of the American Statistical Association 52, 1957)

"[...] to make measurements and then ignore their magnitude would ordinarily be pointless. Exclusive reliance on tests of significance obscures the fact that statistical significance does not imply substantive significance." (I Richard Savage, "Nonparametric Statistics", Journal of the American Statistical Association 52, 1957)

"[...] the tests of null hypotheses of zero differences, of no relationships, are frequently weak, perhaps trivial statements of the researcher’s aims [...] in many cases, instead of the tests of significance it would be more to the point to measure the magnitudes of the relationships, attaching proper statements of their sampling variation. The magnitudes of relationships cannot be measured in terms of levels of significance." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"There are instances of research results presented in terms of probability values of ‘statistical significance’ alone, without noting the magnitude and importance of the relationships found. These attempts to use the probability levels of significance tests as measures of the strengths of relationships are very common and very mistaken." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were decisions one makes. But a hypothesis is not something, like a piece of pie offered for dessert, which can be accepted or rejected by a voluntary physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree of believing or disbelieving which, if rational, is not a matter of choice but determined solely by how likely it is, given the evidence, that the hypothesis is true." (William W Rozeboom, "The fallacy of the null–hypothesis significance test", Psychological Bulletin 57, 1960)

"The null hypothesis of no difference has been judged to be no longer a sound or fruitful basis for statistical investigation. […] Significance tests do not provide the information that scientists need, and, furthermore, they are not the most effective method for analyzing and summarizing data." (Cherry A Clark, "Hypothesis Testing in Relation to Statistical Methodology", Review of Educational Research Vol. 33, 1963)

"[...] the test of significance has been carrying too much of the burden of scientific inference. It may well be the case that wise and ingenious investigators can find their way to reasonable conclusions from data because and in spite of their procedures. Too often, however, even wise and ingenious investigators [...] tend to credit the test of significance with properties it does not have." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"[...] we need to get on with the business of generating [...] hypotheses and proceed to do investigations and make inferences which bear on them, instead of [...] testing the statistical null hypothesis in any number of contexts in which we have every reason to suppose that it is false in the first place." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"Significance levels are usually computed and reported, but power and confidence limits are not. Perhaps they should be." (Amos Tversky & Daniel Kahneman, "Belief in the law of small numbers", Psychological Bulletin 76(2), 1971)

"The emphasis on significance levels tends to obscure a fundamental distinction between the size of an effect and its statistical significance." (Amos Tversky & Daniel Kahneman, "Belief in the law of small numbers", Psychological Bulletin 76(2), 1971)

"[...] too many users of the analysis of variance seem to regard the reaching of a mediocre level of significance as more important than any descriptive specification of the underlying averages. Our thesis is that people have strong intuitions about random sampling; that these intuitions are wrong in fundamental respects; that these intuitions are shared by naive subjects and by trained scientists; and that they are applied with unfortunate consequences in the course of scientific inquiry. We submit that people view a sample randomly drawn from a population as highly representative, that is, similar to the population in all essential characteristics. Consequently, they expect any two samples drawn from a particular population to be more similar to one another and to the population than sampling theory predicts, at least for small samples." (Amos Tversky & Daniel Kahneman, "Belief in the law of small numbers", Psychological Bulletin 76(2), 1971)

On Data Analysis (1970-1979)

"Statistical methods are tools of scientific investigation. Scientific investigation is a controlled learning process in which various aspects of a problem are illuminated as the study proceeds. It can be thought of as a major iteration within which secondary iterations occur. The major iteration is that in which a tentative conjecture suggests an experiment, appropriate analysis of the data so generated leads to a modified conjecture, and this in turn leads to a new experiment, and so on." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Almost all efforts at data analysis seek, at some point, to generalize the results and extend the reach of the conclusions beyond a particular set of data. The inferential leap may be from past experiences to future ones, from a sample of a population to the whole population, or from a narrow range of a variable to a wider range. The real difficulty is in deciding when the extrapolation beyond the range of the variables is warranted and when it is merely naive. As usual, it is largely a matter of substantive judgment - or, as it is sometimes more delicately put, a matter of 'a priori nonstatistical considerations'." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"[…] it is not enough to say: 'There's error in the data and therefore the study must be terribly dubious'. A good critic and data analyst must do more: he or she must also show how the error in the measurement or the analysis affects the inferences made on the basis of that data and analysis." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"The use of statistical methods to analyze data does not make a study any more 'scientific', 'rigorous', or 'objective'. The purpose of quantitative analysis is not to sanctify a set of findings. Unfortunately, some studies, in the words of one critic, 'use statistics as a drunk uses a street lamp, for support rather than illumination'. Quantitative techniques will be more likely to illuminate if the data analyst is guided in methodological choices by a substantive understanding of the problem he or she is trying to learn about. Good procedures in data analysis involve techniques that help to (a) answer the substantive questions at hand, (b) squeeze all the relevant information out of the data, and (c) learn something new about the world." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Typically, data analysis is messy, and little details clutter it. Not only confounding factors, but also deviant cases, minor problems in measurement, and ambiguous results lead to frustration and discouragement, so that more data are collected than analyzed. Neglecting or hiding the messy details of the data reduces the researcher's chances of discovering something new." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"[...] be wary of analysts that try to quantify the unquantifiable." (Ralph Keeney & Raiffa Howard, "Decisions with Multiple Objectives: Preferences and Value Trade-offs", 1976)

"[...] exploratory data analysis is an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as for those we believe might be there. Except for its emphasis on graphs, its tools are secondary to its purpose." (John W Tukey, [comment] 1979)

On Data Analysis (1990-1999)

"[…] data analysis in the context of basic mathematical concepts and skills. The ability to use and interpret simple graphical and numerical descriptions of data is the foundation of numeracy […] Meaningful data aid in replacing an emphasis on calculation by the exercise of judgement and a stress on interpreting and communicating results." (David S Moore, "Statistics for All: Why, What and How?", 1990)

"Data analysis is rarely as simple in practice as it appears in books. Like other statistical techniques, regression rests on certain assumptions and may produce unrealistic results if those assumptions are false. Furthermore it is not always obvious how to translate a research question into a regression model." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Data analysis typically begins with straight-line models because they are simplest, not because we believe reality is inherently linear. Theory or data may suggest otherwise [...]" (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"90 percent of all problems can be solved by using the techniques of data stratification, histograms, and control charts. Among the causes of nonconformance, only one-fifth or less are attributable to the workers." (Kaoru Ishikawa, The Quality Management Journal Vol. 1, 1993)

"Probabilistic inference is the classical paradigm for data analysis in science and technology. It rests on a foundation of randomness; variation in data is ascribed to a random process in which nature generates data according to a probability distribution. This leads to a codification of uncertainly by confidence intervals and hypothesis tests." (William S Cleveland, "Visualizing Data", 1993)

"Visualization is an approach to data analysis that stresses a penetrating look at the structure of data. No other approach conveys as much information. […] Conclusions spring from data when this information is combined with the prior knowledge of the subject under investigation." (William S Cleveland, "Visualizing Data", 1993)

"When the distributions of two or more groups of univariate data are skewed, it is common to have the spread increase monotonically with location. This behavior is monotone spread. Strictly speaking, monotone spread includes the case where the spread decreases monotonically with location, but such a decrease is much less common for raw data. Monotone spread, as with skewness, adds to the difficulty of data analysis. For example, it means that we cannot fit just location estimates to produce homogeneous residuals; we must fit spread estimates as well. Furthermore, the distributions cannot be compared by a number of standard methods of probabilistic inference that are based on an assumption of equal spreads; the standard t-test is one example. Fortunately, remedies for skewness can cure monotone spread as well." (William S Cleveland, "Visualizing Data", 1993)

"A careful and sophisticated analysis of the data is often quite useless if the statistician cannot communicate the essential features of the data to a client for whom statistics is an entirely foreign language." (Christopher J Wild, "Embracing the ‘Wider view’ of Statistics", The American Statistician 48, 1994)

"Science is not impressed with a conglomeration of data. It likes carefully constructed analysis of each problem." (Daniel E Koshland Jr, Science Vol. 263 (5144), [editorial] 1994)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

24 August 2025

On Data Analysis (2010-2019)

"The discrepancy between our mental models and the real world may be a major problem of our times; especially in view of the difficulty of collecting, analyzing, and making sense of the unbelievable amount of data to which we have access today." (Ugo Bardi, "The Limits to Growth Revisited", 2011)

"Too often there is a disconnect between the people who run a study and those who do the data analysis. This is as predictable as it is unfortunate. If data are gathered with particular hypotheses in mind, too often they (the data) are passed on to someone who is tasked with testing those hypotheses and who has only marginal knowledge of the subject matter. Graphical displays, if prepared at all, are just summaries or tests of the assumptions underlying the tests being done. Broader displays, that have the potential of showing us things that we had not expected, are either not done at all, or their message is not able to be fully appreciated by the data analyst." (Howard Wainer, Comment, Journal of Computational and Graphical Statistics Vol. 20(1), 2011)

"Data analysis is not generally thought of as being simple or easy, but it can be. The first step is to understand that the purpose of data analysis is to separate any signals that may be contained within the data from the noise in the data. Once you have filtered out the noise, anything left over will be your potential signals. The rest is just details." (Donald J Wheeler," Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"The four questions of data analysis are the questions of description, probability, inference, and homogeneity. Any data analyst needs to know how to organize and use these four questions in order to obtain meaningful and correct results. [...] 
THE DESCRIPTION QUESTION: Given a collection of numbers, are there arithmetic values that will summarize the information contained in those numbers in some meaningful way?
THE PROBABILITY QUESTION: Given a known universe, what can we say about samples drawn from this universe? [...] 
THE INFERENCE QUESTION: Given an unknown universe, and given a sample that is known to have been drawn from that unknown universe, and given that we know everything about the sample, what can we say about the unknown universe? [...] 
THE HOMOGENEITY QUESTION: Given a collection of observations, is it reasonable to assume that they came from one universe, or do they show evidence of having come from multiple universes?" (Donald J Wheeler," Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"Each systems archetype embodies a particular theory about dynamic behavior that can serve as a starting point for selecting and formulating raw data into a coherent set of interrelationships. Once those relationships are made explicit and precise, the 'theory' of the archetype can then further guide us in our data-gathering process to test the causal relationships through direct observation, data analysis, or group deliberation." (Daniel H Kim, "Systems Archetypes as Dynamic Theories", The Systems Thinker Vol. 24 (1), 2013)

"A complete data analysis will involve the following steps: (i) Finding a good model to fit the signal based on the data. (ii) Finding a good model to fit the noise, based on the residuals from the model. (iii) Adjusting variances, test statistics, confidence intervals, and predictions, based on the model for the noise.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"The random element in most data analysis is assumed to be white noise - normal errors independent of each other. In a time series, the errors are often linked so that independence cannot be assumed (the last examples). Modeling the nature of this dependence is the key to time series.(DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"Statistics is an integral part of the quantitative approach to knowledge. The field of statistics is concerned with the scientific study of collecting, organizing, analyzing, and drawing conclusions from data." (Kandethody M Ramachandran & Chris P Tsokos, "Mathematical Statistics with Applications in R" 2nd Ed., 2015)

"The dialectical interplay of experiment and theory is a key driving force of modern science. Experimental data do only have meaning in the light of a particular model or at least a theoretical background. Reversely theoretical considerations may be logically consistent as well as intellectually elegant: Without experimental evidence they are a mere exercise of thought no matter how difficult they are. Data analysis is a connector between experiment and theory: Its techniques advise possibilities of model extraction as well as model testing with experimental data." (Achim Zielesny, "From Curve Fitting to Machine Learning" 2nd Ed., 2016)

"[…] the data itself can lead to new questions too. In exploratory data analysis (EDA), for example, the data analyst discovers new questions based on the data. The process of looking at the data to address some of these questions generates incidental visualizations - odd patterns, outliers, or surprising correlations that are worth looking into further." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

"Analysis is a two-step process that has an exploratory and an explanatory phase. In order to create a powerful data story, you must effectively transition from data discovery (when you’re finding insights) to data communication (when you’re explaining them to an audience). If you don’t properly traverse these two phases, you may end up with something that resembles a data story but doesn’t have the same effect. Yes, it may have numbers, charts, and annotations, but because it’s poorly formed, it won’t achieve the same results." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"While visuals are an essential part of data storytelling, data visualizations can serve a variety of purposes from analysis to communication to even art. Most data charts are designed to disseminate information in a visual manner. Only a subset of data compositions is focused on presenting specific insights as opposed to just general information. When most data compositions combine both visualizations and text, it can be difficult to discern whether a particular scenario falls into the realm of data storytelling or not." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

On Data Analysis (2000-2009)

"Data are generally collected as a basis for action. However, unless potential signals are separated from probable noise, the actions taken may be totally inconsistent with the data. Thus, the proper use of data requires that you have simple and effective methods of analysis which will properly separate potential signals from probable noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"No matter what the data, and no matter how the values are arranged and presented, you must always use some method of analysis to come up with an interpretation of the data. [...] While every data set contains noise, some data sets may contain signals. Therefore, before you can detect a signal within any given data set, you must first filter out the noise." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"The purpose of analysis is insight. The best analysis is the simplest analysis which provides the needed insight." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Without meaningful data there can be no meaningful analysis. The interpretation of any data set must be based upon the context of those data." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Statistical analysis of data can only be performed within the context of selected assumptions, models, and/or prior distributions. A statistical analysis is actually the extraction of substantive information from data and assumptions. And herein lies the rub, understood well by Disraeli and others skeptical of our work: For given data, an analysis can usually be selected which will result in 'information' more favorable to the owner of the analysis then is objectively warranted." (Stephen B Vardeman & Max D Morris, "Statistics and Ethics: Some Advice for Young Statisticians", The American Statistician vol 57, 2003)

"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance)." (Alan Graham, "Developing Thinking in Statistics", 2006)

"It is the aim of all data analysis that a result is given in form of the best estimate of the true value. Only in simple cases is it possible to use the data value itself as result and thus as best estimate." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Put simply, statistics is a range of procedures for gathering, organizing, analyzing and presenting quantitative data. […] Essentially […], statistics is a scientific approach to analyzing numerical data in order to enable us to maximize our interpretation, understanding and use. This means that statistics helps us turn data into information; that is, data that have been interpreted, understood and are useful to the recipient. Put formally, for your project, statistics is the systematic collection and analysis of numerical data, in order to investigate or discover relationships among phenomena so as to explain, predict and control their occurrence." (Reva B Brown & Mark Saunders, "Dealing with Statistics: What You Need to Know", 2008)

"Data analysis is careful thinking about evidence." (Michael Milton, "Head First Data Analysis", 2009)

"Doing data analysis without explicitly defining your problem or goal is like heading out on a road trip without having decided on a destination." (Michael Milton, "Head First Data Analysis", 2009)

On Data Analysis (1980-1989)

"[...] any hope that we are smart enough to find even transiently optimum solutions to our data analysis problems is doomed to failure, and, indeed, if taken seriously, will mislead us in the allocation of effort, thus wasting both intellectual and computational effort." (John W Tukey, "Choosing Techniques for the Analysis of Data", 1981)

"The fact must be expressed as data, but there is a problem in that the correct data is difficult to catch. So that I always say 'When you see the data, doubt it!' 'When you see the measurement instrument, doubt it!' [...]For example, if the methods such as sampling, measurement, testing and chemical analysis methods were incorrect, data. […] to measure true characteristics and in an unavoidable case, using statistical sensory test and express them as data." (Kaoru Ishikawa, Annual Quality Congress Transactions, 1981)

"Exploratory data analysis, EDA, calls for a relatively free hand in exploring the data, together with dual obligations: (•) to look for all plausible alternatives and oddities - and a few implausible ones, (graphic techniques can be most helpful here) and (•) to remove each appearance that seems large enough to be meaningful - ordinarily by some form of fitting, adjustment, or standardization [...] so that what remains, the residuals, can be examined for further appearances." (John W Tukey, "Introduction to Styles of Data Analysis Techniques", 1982)

"A competent data analysis of an even moderately complex set of data is a thing of trials and retreats, of dead ends and branches." (John W Tukey, Computer Science and Statistics: Proceedings of the 14th Symposium on the Interface, 1983)

"Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance […]" (George Greenstein, "Frozen Star", 1983)

"Iteration and experimentation are important for all of data analysis, including graphical data display. In many cases when we make a graph it is immediately clear that some aspect is inadequate and we regraph the data. In many other cases we make a graph, and all is well, but we get an idea for studying the data in a different way with a different graph; one successful graph often suggests another." (William S Cleveland, "The Elements of Graphing Data", 1985)
"There are some who argue that a graph is a success only if the important information in the data can be seen within a few seconds. While there is a place for rapidly-understood graphs, it is too limiting to make speed a requirement in science and technology, where the use of graphs ranges from, detailed, in-depth data analysis to quick presentation." (William S Cleveland, "The Elements of Graphing Data", 1985)

"A first analysis of experimental results should, I believe, invariably be conducted using flexible data analytical techniques - looking at graphs and simple statistics - that so far as possible allow the data to 'speak for themselves'. The unexpected phenomena that such a approach often uncovers can be of the greatest importance in shaping and sometimes redirecting the course of an ongoing investigation." (George Box, "Signal to Noise Ratios, Performance Criteria, and Transformations", Technometrics 30, 1988)

"Data analysis is an art practiced by individuals who are skilled at quantitative reasoning and have much experience in looking at numbers and detecting  patterns in data. Usually these individuals have some background in statistics." (David Lubinsky, Daryl Pregibon , "Data analysis as search", Journal of Econometrics Vol. 38 (1–2), 1988)

"Like a detective, a data analyst will experience many dead ends, retrace his steps, and explore many alternatives before settling on a single description of the evidence in front of him." (David Lubinsky & Daryl Pregibon , "Data analysis as search", Journal of Econometrics Vol. 38 (1–2), 1988)

On Data Analysis (1950-1969)

"In every branch of knowledge the progress is proportional to the amount of facts on which to build, and therefore to the facility of obtaining data." (James C Maxwell, [letter to Lewis Campbell] 1851)

"Not even the most subtle and skilled analysis can overcome completely the unreliability of basic data." (Roy D G Allen, "Statistics for Economists", 1951)

"The technical analysis of any large collection of data is a task for a highly trained and expensive man who knows the mathematical theory of statistics inside and out. Otherwise the outcome is likely to be a collection of drawings - quartered pies, cute little battleships, and tapering rows of sturdy soldiers in diversified uniforms - interesting enough in the colored Sunday supplement, but hardly the sort of thing from which to draw reliable inferences." (Eric T Bell, "Mathematics: Queen and Servant of Science", 1951)

"If data analysis is to be well done, much of it must be a matter of judgment, and ‘theory’ whether statistical or non-statistical, will have to guide, not command." (John W Tukey, "The Future of Data Analysis", Annals of Mathematical Statistics, Vol. 33 (1), 1962)

"The most important maxim for data analysis to heed, and one which many statisticians seem to have shunned is this: ‘Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise.’ Data analysis must progress by approximate answers, at best, since its knowledge of what the problem really is will at best be approximate." (John W Tukey, "The Future of Data Analysis", Annals of Mathematical Statistics, Vol. 33, No. 1, 1962)

"The first step in data analysis is often an omnibus step. We dare not expect otherwise, but we equally dare not forget that this step, and that step, and other step, are all omnibus steps and that we owe the users of such techniques a deep and important obligation to develop ways, often varied and competitive, of replacing omnibus procedures by ones that are more sharply focused." (John W Tukey, "The Future of Processes of Data Analysis", 1965)

"The basic general intent of data analysis is simply stated: to seek through a body of data for interesting relationships and information and to exhibit the results in such a way as to make them recognizable to the data analyzer and recordable for posterity. Its creative task is to be productively descriptive, with as much attention as possible to previous knowledge, and thus to contribute to the mysterious process called insight." (John W Tukey & Martin B Wilk, "Data Analysis and Statistics: An Expository Overview", 1966)

"Comparable objectives in data analysis are (l) to achieve more specific description of what is loosely known or suspected; (2) to find unanticipated aspects in the data, and to suggest unthought-of-models for the data's summarization and exposure; (3) to employ the data to assess the (always incomplete) adequacy of a contemplated model; (4) to provide both incentives and guidance for further analysis of the data; and (5) to keep the investigator usefully stimulated while he absorbs the feeling of his data and considers what to do next." (John W Tukey & Martin B Wilk, "Data Analysis and Statistics: An Expository Overview", 1966)

"Data analysis must be iterative to be effective. [...] The iterative and interactive interplay of summarizing by fit and exposing by residuals is vital to effective data analysis. Summarizing and exposing are complementary and pervasive." (John W Tukey & Martin B Wilk, "Data Analysis and Statistics: An Expository Overview", 1966)

"Every student of the art of data analysis repeatedly needs to build upon his previous statistical knowledge and to reform that foundation through fresh insights and emphasis." (John W Tukey, "Data Analysis, Including Statistics", 1968)

"[...] bending the question to fit the analysis is to be shunned at all costs." (John W Tukey, "Analyzing Data: Sanctification or Detective Work?", 1969)

On Art X: Artists

"The one thing that marks the true artist is a clear perception and a firm, bold hand, in distinction from that imperfect mental vision and uncertain truth which give up the feeble pictures and the lumpy statues of the mere artisans on canvas or in stone." (Oliver W Holmes, "The Professor at the Breakfast Table Ticknor and Fields", 1860)

"A scientist worthy of the name, above all a mathematician, experiences in his work the same impression as an artist; his pleasure is as great and of the same nature. [...] we work not only to obtain the positive results which, according to the profane, constitute our one and only affection, as to experience this esthetic emotion and to convey it to others who are capable of experiencing it." (Henri Poincaré, "Notice sur Halphen", Journal de l'École Polytechnique, 1890)

"The true mathematician is always a great deal of an artist, an architect, yes, of a poet. Beyond the real world, though perceptibly connected with it, mathematicians have created an ideal world which they attempt to develop into the most perfect of all worlds, and which is being explored in every direction. None has the faintest conception of this world except him who knows it; only presumptuous ignorance can assert that the mathematician moves in a narrow circle. The truth which he seeks is, to be sure, broadly considered, neither more nor less than consistency; but does not his mastership show, indeed, in this very limitation? To solve questions of this kind he passes unenviously over others." (Alfred Pringsheim, Jaresberichte der Deutschen Mathematiker Vereinigung Vol 13, 1904)

"Imagine any sort of model and a copy of it done by an awkward artist: the proportions are altered, lines drawn by a trembling hand are subject to excessive deviation and go off in unexpected directions. From the point of view of metric or even projective geometry these figures are not equivalent, but they appear as such from the point of view of geometry of position [that is, topology]." (Henri Poincaré, "Dernières pensées", 1920)

"There is a science of simple things, an art of complicated ones. Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear. We are tending toward the condition of science and aspiring to it. The artist works out his own formulas; the interest of science lies in the art of making science." (Paul Valéry, "Moralités", 1932)

"Today the function of the artist is to bring imagination to science and science to imagination, where they meet, in the myth." (Cyril Connolly, The Unquiet Grave, 1945)

"Nature does not seem full of circles and triangles to the ungeometrical; rather, mastery of the theory of triangles and circles, and later of conic sections, has taught the theorist, the experimenter, the carpenter, and even the artist to find them everywhere, from the heavenly motions to the pose of a Venus." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"For some years now the activity of the artist in our society has been trending more toward the function of the ecologist: one who deals with environmental relationships. Ecology is defined as the totality or pattern of relations between organisms and their environment. Thus the act of creation for the new artist is not so much the invention of new objects as the revelation of previously unrecognized relation- ships between existing phenomena, both physical and metaphysical. So we find that ecology is art in the most fundamental and pragmatic sense, expanding our apprehension of reality." (Gene Youngblood, "Expanded Cinema", 1970)

"Though we can say that mathematics is not art, some mathematicians think of themselves as artists of pure form. It seems clear, however, that their elegant and near aesthetic forms fail as art, because they are secondary visual ideas, the product of an intellectual set of restraints, rather than the cause of a felt insight realized in and through visual form." (Robert E Mueller, "Idols of Computer Art", 1972) 

"How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers." (Isaac Asimov, "The Roving Mind", 1983)

"Literature is as much a product of the technological and scientific milieu as it is of the artistic one. Some of the large ideas, call them theories or metaphors - that humans are machines, that the observer affects the phenomenon observed, that information can be quantified - alter the way work is done in art. Metaphors invented by artists imply new ways of seeing, demolish mere logic, provoke alternatives, and lead to new theories in science." (David Porush, "The Soft Machine", 1985)

"Fractal geometry appears to have created a new category of art, next to art for art’s sake and art for the sake of commerce: art for the sake of science (and of mathematics). [...] The source of fractal art resides in the recognition that very simple mathematical formulas that seem completely barren may in fact be pregnant, so to speak, with an enormous amount of graphic structure. The artist’s taste can only affect the selection of formulas to be rendered, the cropping and the rendering. Thus, fractal art seems to fall outside the usual categories of ‘invention’, ‘discovery’ and ‘creativity’." (Benoît B Mandelbrot, "Fractals and an Art for the Sake of Science", 1989)

"[...] in science there are collectors, classifiers, compulsory tidiers-up and permanent contesters, detectives, some artists and many artisans, there are poet-scientists and philosophers and even a few mystics." (Rolf M Zinkernagel, [Nobel lecture] 1996)

"'Doing mathematics' is thus working on the construction of some mathematical object and resembles other creative enterprises of the mind in a scientific or artistic domain. But while the mental exercise of creating mathematics is somehow related to that of creating art, it should remain clear that mathematical objects are very different from the artistic objects that occur in literature, music, or the visual arts." (David Ruelle, "The Mathematician's Brain", 2007)

"It is ironic but true: the one reality science cannot reduce is the only reality we will ever know. This is why we need art. By expressing our actual experience, the artist reminds us that our science is incomplete, that no map of matter will ever explain the immateriality of our consciousness." (Jonah Lehrer, "Proust Was a Neuroscientist", 2011)

Related Posts Plugin for WordPress, Blogger...

On Mathematical Reasoning

"The Reader may here observe the Force of Numbers, which can be successfully applied, even to those things, which one would imagine are...