"Because the subject matter of cybernetics is the propositional or informational aspect of the events and objects in the natural world, this science is forced to procedures rather different from those of the other sciences. The differentiation, for example, between map and territory, which the semanticists insist that scientists shall respect in their writings must, in cybernetics, be watched for in the very phenomena about which the scientist writes. Expectably, communicating organisms and badly programmed computers will mistake map for territory; and the language of the scientist must be able to cope with such anomalies." (Gregory Bateson, "Steps to an Ecology of Mind", 1972)
"Everything we think we know about the world is a model. Every word and every language is a model. All maps and statistics, books and databases, equations and computer programs are models. So are the ways I picture the world in my head - my mental models. None of these is or ever will be the real world. […] Our models usually have a strong congruence with the world. That is why we are such a successful species in the biosphere. Especially complex and sophisticated are the mental models we develop from direct, intimate experience of nature, people, and organizations immediately around us." (Donella Meadows, "Limits to Growth", 1972)
"To do science is to search for repeated patterns, not simply to accumulate facts, and to do the science of geographical ecology is to search for patterns of plants and animal life that can be put on a map." (Robert H. MacArthur, "Geographical Ecology", 1972)
"What a lost person needs is a map of the territory, with his own position marked on it so he can see where he is in relation to everything else. Literature is not only a mirror; it is also a map, a geography of the mind. Our literature is one such map, if we can learn to read it as our literature, as the product of who and where we have been. We need such a map desperately, we need to know about here, because here is where we live. For the members of a country or a culture, shared knowledge of their place, their here, is not a luxury but a necessity. Without that knowledge we will not survive." (Margaret Atwood, "Survival: A Thematic Guide to Canadian Literature", 1972)
"A person is changed by the contingencies of reinforcement under which he behaves; he does not store the contingencies. In particular, he does not store copies of the stimuli which have played a part in the contingencies. There are no 'iconic representations' in his mind; there are no 'data structures stored in his memory'; he has no 'cognitive map' of the world in which he has lived. He has simply been changed in such a way that stimuli now control particular kinds of perceptual behavior." (Burrhus F Skinner, "About behaviorism", 1974)
"The ‘culture’ of a group or class, is the peculiar and distinctive ‘way of life’ of the group or class, the meanings, values and ideas embodied in institutions, in social relations, in systems of beliefs, in mores and customs, in the uses of objects and material life. Culture is the distinctive shapes in which this material and social organization of life expresses itself. A culture includes the ‘maps of meaning’ which make things intelligible to its members. These ‘maps of meaning’ are not simply carried around in the head: they are objectivated in the patterns of social organization and relationship through which the individual becomes a ‘social individual’. Culture is the way the social relations of a group are structured and shaped: but it is also the way those shapes are experienced, understood and interpreted." (John Clark et al "Subcultures, Cultures and Class", 1975)
"The orchard of science is a vast globe-encircling monster, without a map, and known to no one man; indeed, to no group of men fewer than the whole international mass of creative scientists. Within it, each observer clings to his own well-known and well-loved clump of trees. If he looks beyond, it is usually with a guilty sigh." (Isaac Asimov, "View from a Height", 1975)
"[…] there is an irreducible difference between the world and our experience of it. We as human beings do not operate directly on the world. Each of us creates a representation of the world in which we live - that is, we create a map or model which we use to generate our behavior. Our representation of the world determines to a large degree what our experience of the world will be, how we will perceive the world, what choices we will see available to us as we live in the world." (Richard Bandler & John Grinder, "The Structure of Magic", 1975)
"A cognitive map is a specific way of representing a person's assertions about some limited domain, such as a policy problem. It is designed to capture the structure of the person's causal assertions and to generate the consequences that follow front this structure. […] a person might use his cognitive map to derive explanations of the past, make predictions for the future, and choose policies in the present." (Robert M Axelrod, "Structure of Decision: The cognitive maps of political elites", 1976)
"As we experience space, and construct representations of it, we know that it will be continuous, everything is somewhere, and no matter what other characteristics objects do not share, they always share relative location, that is, spatiality; hence the desirability of equating knowledge with space, an intellectual space. This assures an organization and basis for predictability, which are shared by absolutely everyone. This proposition appears to be so fundamental that apparently it is simply adopted a priori." (Arthur H Robinson & Barbara B Petchenik, "The Nature of Maps: Essays toward Understanding Maps and Mapping", 1976)
"Mapping is based on systems of assumptions, on logic, on human needs, and on human cognitive characteristics, very little of which has been recognized or discussed in cartography." (Arthur H Robinson & Barbara B Petchenik, "The Nature of Maps: Essays toward Understanding Maps and Mapping", 1976)
"The concepts a person uses are represented as points, and the causal links between these concepts are represented as arrows between these points. This gives a pictorial representation of the causal assertions of a person as a graph of points and arrows. This kind of representation of assertions as a graph will be called a cognitive map. The policy alternatives, all of the various causes and effects, the goals, and the ultimate utility of the decision maker can all be thought of as concept variables, and represented as points in the cognitive map. The real power of this approach ap pears when a cognitive map is pictured in graph form; it is then relatively easy to see how each of the concepts and causal relation ships relate to each other, and to see the overall structure of the whole set of portrayed assertions." (Robert Axelrod, "The Cognitive Mapping Approach to Decision Making" [in "Structure of Decision: The Cognitive Maps of Political Elites"], 1976)
"What you may call a graph, someone else may call a chart, for both terms are used for the same thing. Actually, however. the word 'chart' was originally used only for navigation maps and diagrams. Most people agree that it is best to leave the term 'chart' to the navigators." (Dyno Lowenstein, "Graphs", 1976)
"A map seems the type of conceptual object, yet the interesting thing is the grotesquely token foot it keeps in the world of the physical, having the unreality without the far-fetched appropriateness of the edibles in Communion, being a picture to the degree that the sacrament is a meal. For a feeling of thorough transcendence such unobvious relations between the model and the representation seem essential, and the flimsy connection between acres of soil and their image on the map makes reading one an erudite act." (Robert Harbison, "Eccentric Spaces", 1977)
"The theory of probability is the only mathematical tool available to help map the unknown and the uncontrollable. It is fortunate that this tool, while tricky, is extraordinarily powerful and convenient." (Benoit Mandelbrot, "The Fractal Geometry of Nature", 1977)
"The types of graphics used in operating a business fall into three main categories: diagrams, maps, and charts. Diagrams, such as organization diagrams, flow diagrams, and networks, are usually intended to graphically portray how an activity should be, or is being, accomplished, and who is responsible for that accomplishment. Maps such as route maps, location maps, and density maps, illustrate where an activity is, or should be, taking place, and what exists there. [...] Charts such as line charts, column charts, and surface charts, are normally constructed to show the businessman how much and when. Charts have the ability to graphically display the past, present, and anticipated future of an activity. They can be plotted so as to indicate the current direction that is being followed in relationship to what should be followed. They can indicate problems and potential problems, hopefully in time for constructive corrective action to be taken." (Robert D Carlsen & Donald L Vest, "Encyclopedia of Business Charts", 1977)
"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)
"'Catastrophe theory' denotes both a purely mathematical discipline describing certain singularities of smooth maps, as well as the concerted effort to apply these theorems to a wide variety of problems in fields ranging from linguistics and psychology to embryology, evolution, physics, and engineering." (Héctor J Sussmann & Raphael S Zahler, "Catastrophe Theory as Applied to the Social and Biological Sciences: A Critique" Synthese Vol. 37 (2), 1978)
"[...] it seems (to many) that we cannot account for perception unless we suppose it provides us with an internal image (or model or map) of the external world, and yet what good would that image do us unless we have an inner eye to perceive it, and how are we to explain its capacity for perception? It also seems (to many) that understanding a heard sentence must be somehow translating it into some internal message, but how will this message be understood: by translating it into something else? The problem is an old one, and let’s call it Hume’s Problem, for while he did not state it explicitly, he appreciated its force and strove mightily to escape its clutches. (Daniel Dennett, "Brainstorms: Philosophical essays on mind and psychology", 1978)
"Mathematical equations and literary phrases are useful but they are no substitute for the spatial eloquence of the map." (Arthur H Robinson, "Uniqueness of the Map", American Cartographer Vol. 5 (1), 1978)
"The cognitive map is not a picture or image which 'looks like' what it represents; rather, it is an information structure from which map-like images can be reconstructed and from which behaviour dependent upon place information can be generated." (John O'Keefe & Lynn Nadel, "The Hippocampus as a Cognitive Map", 1978)
No comments:
Post a Comment