28 September 2025

On Quantum Mechanics (2000-2009)

"It is intriguing that any of the various new expansions and associated observations relevant to the critical zeros arise from the fi eld of quantum theory, feeding back, as it were, into the study of the Riemann zeta function. But the feedback of which we speak can move in the other direction, as techniques attendant on the Riemann zeta function apply to quantum studies." (Jonathan M Borwein et al, "Computational Strategies for the Riemann Zeta Function", Journal of Computational and Applied Mathematics Vol. 121, 2000) 

"Statistical mechanics is the science of predicting the observable properties of a many-body system by studying the statistics of the behaviour of its individual constituents, be they atoms, molecules, photons etc. It provides the link between macroscopic and microscopic states. […] classical thermodynamics. This is a subject dealing with the very large. It describes the world that we all see in our daily lives, knows nothing about atoms and molecules and other very small particles, but instead treats the universe as if it were made up of large-scale continua. […] quantum mechanics. This is the other end of the spectrum from thermodynamics; it deals with the very small. It recognises that the universe is made up of particles: atoms, electrons, protons and so on. One of the key features of quantum mechanics, however, is that particle behaviour is not precisely determined (if it were, it would be possible to compute, at least in principle, all past and future behaviour of particles, such as might be expected in a classical view). Instead, the behaviour is described through the language of probabilities." (A Mike Glazer & Justin S Wark, "Statistical Mechanics: A survival guide", 2001)

"To describe how quantum theory shapes time and space, it is helpful to introduce the idea of imaginary time. Imaginary time sounds like something from science fiction, but it is a well-defined mathematical concept: time measured in what are called imaginary numbers. […] Imaginary numbers can then be represented as corresponding to positions on a vertical line: zero is again in the middle, positive imaginary numbers plotted upward, and negative imaginary numbers plotted downward. Thus imaginary numbers can be thought of as a new kind of number at right angles to ordinary real numbers. Because they are a mathematical construct, they don't need a physical realization […]" (Stephen W Hawking, "The Universe in a Nutshell", 2001)

"A theory makes certain predictions and allows calculations to be made that can be tested directly through experiments and observations. But a theory such as superstrings talks about quantum objects that exist in a multidimensional space and at incredibly short distances. Other grand unified theories would require energies close to those experienced during the creation of the universe to test their predictions." (F David Peat, "From Certainty to Uncertainty", 2002)

"Quantum theory introduced uncertainty into physics; not an uncertainty that arises out of mere ignorance but a fundamental uncertainty about the very universe itself. Uncertainty is the price we pay for becoming participators in the universe. Ultimate knowledge may only be possible for ethereal beings who lie outside the universe and observe it from their ivory towers." (F David Peat, "From Certainty to Uncertainty", 2002)

"The quantum world is in a constant process of change and transformation. On the face of it, all possible processes and transformations could take place, but nature’s symmetry principles place limits on arbitrary transformation. Only those processes that do not violate certain very fundamental symmetry principles are allowed in the natural world." (F David Peat, "From Certainty to Uncertainty", 2002)

"One reason for the importance of Riemannian manifolds is that they are generalizations of Euclidean geometry - general enough but not too general. They are still close enough to Euclidean geometry to have a Laplace operator. This is the key to quantum mechanics, heat and waves. The various generalizations of Riemannian manifold [...] do not have a simple natural unambiguous choice of such an operator. [...] Another reason for the prominence of Riemannian manifolds is that the maximal compact subgroup of the general linear group is the orthogonal group. So the least restriction we can make on any geometric structure so that it 'rigidifies' always adds a Riemannian geometry. Moreover, any geometric structure will always permit such a 'rigidification'. [...] Similarly, if we were to pick out a submanifold of the tangent bundle of some manifold, distinguishing tangent vectors, in such a manner that in each tangent space, any two lines could be brought to one another, or any two planes, etc., then the maximal symmetry group we could come up with in a single tangent space which was not the whole general linear group would be the orthogonal group of a Riemannian metric. So Riemannian geometry is the 'least' structure, or most symmetrical one, we can pick, at first order." (Marcel Berger, "A Panoramic View of Riemannian Geometry", 2003)

"Some areas of human knowledge ever since its origin had shaken our understanding of the universe from time to time. While this is more true about physics, it is true about mathematics as well. The birth of topology as analysis situs meaning rubbersheet geometry had a similar impact on our traditional knowledge of analysis. Indeed, topology had enough energy and vigour to give birth to a new culture of mathematical approach. Algebraic topology added a new dimension to that. Because quantum physicists and applied mathematicians had noted wonderful interpretations of many physical phenomena through algebraic topology, they took immense interest in the study of topology in the twentieth century." (D Chatterjee, "Topology: General & Algebraic", 2003)

"Group theory is a powerful tool for studying the symmetry of a physical system, especially the symmetry of a quantum system. Since the exact solution of the dynamic equation in the quantum theory is generally difficult to obtain, one has to find other methods to analyze the property of the system. Group theory provides an effective method by analyzing symmetry of the system to obtain some precise information of the system verifiable with observations." (Zhong-Qi Ma, Xiao-Yan Gu, "Problems and Solutions in Group Theory for Physicists", 2004)

"Quantum-mechanical effects appear in physical systems that are exceedingly small. A small system means very tiny objects with very tiny amounts of energy, moving around over very short time intervals. Quantum effects show up dramatically once we arrive at length scales the size of the atom, about one ten-thousandth of a millionth of a meter. In fact, we simply cannot understand an atom without quantum mechanics. This is not to say that nature itself suddenly 'switches off'' classical mechanics and 'switches on' quantum mechanics when we enter this new submicroscopic realm. Quantum mechanics is always valid and always holds true at all scales of nature. Rather, quantum effects gradually become more and more pronounced as we descend into the world of atoms. Quantum mechanics is the ultimate set of rules, as far as we know, that governs how nature works" (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"The inner mysteries of quantum mechanics require a willingness to extend one’s mental processes into a strange world of phantom possibilities, endlessly branching into more and more abstruse chains of coupled logical networks, endlessly extending themselves forward and even backwards in time." (John C Ward, "Memoirs of a Theoretical Physicist", 2004)

"More generally an axiomatic projective space has a lattice of projective linear subspaces, the incidence relation ⊂, intersection and linear span, and suitable axioms. It is best not to insist a priori that the dimension of the space or its projective linear subspaces is specified. The most important case is the infinite dimensional case, which von Neumann used to give axiomatic foundations to quantum mechanics, when dimensions of projective linear subspaces can take values in R or the value ∞." (Miles Reid & Balazs Szendröi, "Geometry and Topology", 2005)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"String theory was not invented to describe gravity; instead it originated in an attempt to describe the strong interactions, wherein mesons can be thought of as open strings with quarks at their ends. The fact that the theory automatically described closed strings as well, and that closed strings invariably produced gravitons and gravity, and that the resulting quantum theory of gravity was finite and consistent is one of the most appealing aspects of the theory." (David Gross, "Einstein and the Search for Unification", 2005)

"We divide math up into separate areas (analysis, mechanics, algebra, geometry, electromagnetism, number theory, quantum mechanics, etc.) to clarify the study of each part; but the equally valuable activity of integrating the components into a working whole is all too often neglected. Without it, the stated aim of ‘taking something apart to see how it ticks’ degenerates imperceptibly into ‘taking it apart to ensure it never ticks again’." (Miles Reid & Balazs Szendröi, "Geometry and Topology", 2005)

"Moonshine is interested in the correlation functions of a class of extremely symmetrical and well-behaved quantum field theories called rational conformal field theories - these theories are so special that their correlation functions can be computed exactly and perturbation is not required." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Moonshine is profoundly connected with physics (namely conformal field theory and string theory). String theory proposes that the elementary particles (electrons, photons, quarks, etc.) are vibrational modes on a string of length about 10^−33 cm. These strings can interact only by splitting apart or joining together – as they evolve through time, these (classical) strings will trace out a surface called the world-sheet. Quantum field theory tells us that the quantum quantities of interest (amplitudes) can be perturbatively computed as weighted averages taken over spaces of these world-sheets. Conformally equivalent world-sheets should be identified, so we are led to interpret amplitudes as certain integrals over moduli spaces of surfaces. This approach to string theory leads to a conformally invariant quantum field theory on two-dimensional space-time, called conformal field theory (CFT). The various modular forms and functions arising in Moonshine appear as integrands in some of these genus-1 (‘1-loop’) amplitudes: hence their modularity is manifest." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Briefly stated, the orthodox formulation of quantum theory asserts that, in order to connect adequately the mathematically described state of a physical system to human experience, there must be an abrupt intervention in the otherwise smoothly evolving mathematically described state of that system." (Henry P Stapp, "Mindful Universe: Quantum Mechanics and the Participating Observer", 2007)

"The existing general descriptions of quantum theory emphasize puzzles and paradoxes in a way that tend to make non-physicists leery of using in any significant away the profound changes in our understanding of both man and nature wrought by the quantum revolution. Yet in the final analysis quantum mechanics is more understandable than classical mechanics because it is more deeply in line with our common sense ideas about our role in nature than the ‘automaton’ notion promulgated by classical physics." (Henry P Stapp, "Mindful Universe: Quantum Mechanics and the Participating Observer", 2007)

"The standard big bang model doesn’t explain the smoothness and flatness of the universe, so it’s been embellished by an additional component: inflation. A minuscule fraction of a second after the big bang, the universe was propelled into an exponential expansion that increased its size from a proton to a grapefruit. […] Moreover, if we accept the theory that the universe emerged from a quantum seed and exponentially expanded in the big bang, there is the possibility that other regions of space-time exist, remote in time or space from our universe. Due to the random nature of quantum processes, these parallel universes could have wildly different properties. This extravagant concept is called the multiverse." (Chris Impey, "The Living Cosmos: Our search for life in the universe", 2007)

"In Dirac’s interpretation of the vacuum, if one electron in this sea were missing, it would leave a hole. The absence of a negatively charged electron with energy that is negative relative to sea-level, will appear as a positively charged particle with positive energy, namely with all the attributes of what was later called a positron. This was a strange idea, and quantum mechanics is still strange eighty years later; it was only in its infancy when Dirac made his proposal, which was a piece of radical genius." (Frank Close, "Antimatter", 2009)

"Schrodinger’s equation also explained why the orbital motion of electrons in atoms caused the spectral lines to multiply in magnetic fields. However, it gave no explanation for the electron’s own intrinsic ‘spin’. This known property of the electron had no place in Schrodinger’s theory. A more complete quantum mechanics, one that incorporated spin and applied at relativistic speeds, waited to be discovered." (Frank Close, "Antimatter", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Literature: On God (From Fiction to Science-Fiction)

"We know that there is an infinite, and we know not its nature. As we know it to be false that numbers are finite, it is therefore true...