09 October 2017

On Models: On Mathematical Models (-1949)

" […] as a general rule, that in selecting a particular case for constructing a model the first prerequisite is regularity. By selecting a symmetrical form for the model, not only is the execution simplified, but what is of more importance, the model will be of such a character as to impress itself readily on the mind." (Felix Klein, 1893)

"The atomic theory plays a part in physics similar to that of certain auxiliary concepts in mathematics: it is a mathematical model for facilitating the mental reproduction of facts. Although we represent vibrations by the harmonic formula, the phenomena of cooling by exponentials, falls by squares of time, etc, no one would fancy that vibrations in themselves have anything to do with circular functions, or the motion of falling bodies with squares." (Ernst Mach, "The Science of Mechanic", 1893)

"Experience teaches that one will be led to new discoveries almost exclusively by means of special mechanical models." (Ludwig Boltzmann, "Lectures on Gas Theory", 1896)

"A symbolical representation of a method of calculation has the same significance for a mathematician as a model or a visualisable working hypothesis has for a physicist. The symbol, the model, the hypothesis runs parallel with the thing to be represented. But the parallelism may extend farther, or be extended farther, than was originally intended on the adoption of the symbol. Since the thing represented and the device representing are after all different, what would be concealed in the one is apparent in the other." (Ernst Mach, "Space and Geometry: In the Light of physiological, phycological and physical inquiry", 1906)

"It is characteristic of modern physics to represent all processes in terms of mathematical equations. But the close connection between the two sciences must not blur their essential difference." (Hans Reichenbach, "The Theory of Relativity and A Priori Knowledge", 1920)

"The physical object cannot be determined by axioms and definitions. It is a thing of the real world, not an object of the logical world of mathematics. Offhand it looks as if the method of representing physical events by mathematical equations is the same as that of mathematics. Physics has developed the method of defining one magnitude in terms of others by relating them to more and more general magnitudes and by ultimately arriving at 'axioms', that is, the fundamental equations of physics. Yet what is obtained in this fashion is just a system of mathematical relations. What is lacking in such system is a statement regarding the significance of physics, the assertion that the system of equations is true for reality." (Hans Reichenbach, "The Theory of Relativity and A Priori Knowledge", 1920)

"The final truth about phenomena resides in the mathematical description of it; so long as there is no imperfection in this, our knowledge is complete. We go beyond the mathematical formula at our own risk; we may find a [nonmathematical] model or picture that helps us to understand it, but we have no right to expect this, and our failure to find such a model or picture need not indicate that either our reasoning or our knowledge is at fault." (James Jeans, "The Mysterious Universe", 1930)

"[…] the main object of physical science is not the provision of pictures, but in the formulation of laws governing phenomena and the application of these laws to the discovery of new phenomena. If a picture exists, so much the better; but whether a picture exists or not is a matter of only secondary importance. In the case of atomic phenomena no picture can be expected to exist in the usual sense of the word ‘picture’, by which is meant to model functioning essentially on classical lines. One may extend the meaning of the word ‘picture’ to include any way of looking at the fundamental laws which make their self-consistency obvious. With this extension, one may acquire a picture of atomic phenomena by becoming familiar with the laws of quantum theory." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)

"Physics is the attempt at the conceptual construction of a model of the real world and its lawful structure." (Albert Einstein, [letter to Moritz Schlick] 1931)

"The atomic theory plays a part in physics similar to that of certain auxiliary concepts in mathematics: it is a mathematical model for facilitating the mental reproduction of facts." (Ernst Mach, "The Science of Mechanics" 5th Ed, 1942)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Literature: On Surfaces (From Fiction to Science-Fiction)

"In Science, all tends to stir, to change, to form fresh surfaces. All denies, destroys, creates, replaces all. What was ground yesterd...