05 January 2019

On Probability (1800-1899)

"Probability has reference partly to our ignorance, partly to our knowledge [..] The theory of chance consists in reducing all the events of the same kind to a certain number of cases equally possible, that is to say, to such as we may be equally undecided about in regard to their existence, and in determining the number of cases favorable to the event whose probability is sought. The ratio of this number to that of all cases possible is the measure of this probability, which is thus simply a fraction whose number is the number of favorable cases and whose denominator is the number of all cases possible." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814)

"One may even say, strictly speaking, that almost all our knowledge is only probable; and in the small number of things that we are able to know with certainty, in the mathematical sciences themselves, the principal means of arriving at the truth - induction and analogy - are based on probabilities, so that the whole system of human knowledge is tied up with the theory set out in this essay." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities", 1814)

"The probability of an event is the reason we have to believe that it has taken place, or that it will take place." (Siméon-Denis Poisson, "'Règles générales des probabilités", 1837)

"The measure of the probability of an event is the ratio of the number of cases favourable to that event, to the total number of cases favourable or contrary, and all equally possible' (equally like to happen)." (Siméon-Denis Poisson, "'Règles générales des probabilités", 1837)

"I consider the world probability as meaning the state of mind with respect to an assertion, a coming event, or any other matter on which absolute knowledge does not exist." (Augustus De Morgan, "Essay on Probability", 1838)

"The actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore, the true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind." (James Clerk Maxwell, 1850)

"[…] probability, in its mathematical acceptation, has reference to the state of our knowledge of the circumstances under which an event may happen or fail. With the degree of information which we possess concerning the circumstances of an event, the reason we have to think that it will occur, or, to use a single term, our expectation of it, will vary. Probability is expectation founded upon partial knowledge. A perfect acquaintance with all the circumstances affecting the occurrence of an event would change expectation into certainty, and leave neither room nor demand for a theory of probabilities." (George Boole, "The Laws of Thought", 1854)

"There is no more remarkable feature in the mathematical theory of probability than the manner in which it has been found to harmonize with, and justify, the conclusions to which mankind have been led, not by reasoning, but by instinct and experience, both of the individual and of the race. At the same time it has corrected, extended, and invested them with a definiteness and precision of which these crude, though sound, appreciations of common sense were till then devoid." (Morgan W Crofton, "Probability", Encyclopaedia Britannica 9th Ed,, 1885)

"The scientific imagination always restrains itself within the limits of probability." (Thomas H Huxley, "Science and Christian Tradition", 1893)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...