29 April 2020

On Infinite (1700-1749)

"[…] even if someone refuses to admit infinite and infinitesimal lines in a rigorous metaphysical sense and as real things, he can still use them with confidence as ideal concepts (notions ideales) which shorten his reasoning, similar to what we call imaginary roots in the ordinary algebra, for example, √-2." (Gottfried W Leibniz, [letter to Varignon], 1702)

"Even though these are called imaginary, they continue to be useful and even necessary in expressing real magnitudes analytically. For example, it is impossible to express the analytic value of a straight line necessary to trisect a given angle without the aid of imaginaries. Just so it is impossible to establish our calculus of transcendent curves without using differences which are on the point of vanishing, and at last taking the incomparably small in place of the quantity to which we can assign smaller values to infinity." (Gottfried W Leibniz, [letter to Varignon], 1702)

"Of late the speculations about Infinities have run so high, and grown to such strange notions, as have occasioned no small scruples and disputes among the geometers of the present age. Some there are of great note who, not contented with holding that finite lines may be divided into an infinite number of parts, do yet further maintain that each of these infinitesimals is itself subdivisible into an infinity of other parts or infinitesimals of a second order, and so on ad infinitum. These I say assert there are infinitesimals of infinitesimals, etc., without ever coming to an end; so that according to them an inch does not barely contain an infinite number of parts, but an infinity of an infinity of an infinity ad infinitum of parts.” (George Berkeley, "The Principles of Human Knowledge”, 1710)

"There are two famous labyrinths where our reason very often goes astray. One concerns the great question of the free and the necessary, above all in the production and the origin of Evil. The other consists in the discussion of continuity, and of the indivisibles which appear to be the elements thereof, and where the consideration of the infinite must enter in.” (Gottfried W Leibniz, "Theodicy: Essays on the Goodness of God and Freedom of Man and the Origin of Evil", 1710)

"The sum of an infinite series whose final term vanishes perhaps is infinite, perhaps finite." (Jacob Bernoulli, "Ars Conjectandi", 1713)

"And thus in all cases it will be found, that although Chance produces Irregularities, still the odds will be infinitely great that in the process of time, those Irregularities will bear no proportion to the recurrency of that Order which naturally results from ORIGINAL DESIGN." (Abraham de Moivre, "The Doctrine of Chances", 1718)

"And what are these fluxions? The velocities of evanescent increments. And what are these same evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?" (George Berkeley, "The Analyst", 1734)

"Often I have considered the fact that most of the difficulties which block the progress of students trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition they entertain strange ideas about the concept of the infinite, which they must try to use." (Leonhard Euler, "Introduction to Analysis of the Infinite", 1748)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...