29 April 2020

On Infinite (1880-1889)

"In order for there to be a variable quantity in some mathematical study, the domain of its variability must strictly speaking be known beforehand through a definition. However, this domain cannot itself be something variable, since otherwise each fixed support for the study would collapse. Thus this domain is a definite, actually infinite set of values. Hence each potential infinite, if it is rigorously applicable mathematically, presupposes an actual infinite." (Georg Cantor, "Über die verschiedenen Ansichten in Bezug auf die actualunendlichen Zahlen" ["Over the different views with regard to the actual infinite numbers"], 1886)

"There is no doubt that we cannot do without variable quantities in the sense of the potential infinite. But from this very fact the necessity of the actual infinite can be demonstrated." (Georg Cantor, "Über die verschiedenen Ansichten in Bezug auf die actualunendlichen Zahlen" ["Over the different views with regard to the actual infinite numbers"], 1886)

"I am convinced that it is impossible to expound the methods of induction in a sound manner, without resting them on the theory of probability. Perfect knowledge alone can give certainty, and in nature perfect knowledge would be infinite knowledge, which is clearly beyond our capacities. We have, therefore, to content ourselves with partial knowledge, - knowledge mingled with ignorance, producing doubt." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

"In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...