"Induction and analogy are the special characteristics of modern mathematics, in which theorems have given place to theories and no truth is regarded otherwise than as a link in an infinite chain." (James J Sylvester, "A Plea for the Mathematician", Nature Vol. 1, 1870)
"The great truths with which it [mathematics] deals, are clothed with austere grandeur, far above all purposes of immediate convenience or profit. It is in them that our limited understandings approach nearest to the conception of that absolute and infinite, towards which in most other things they aspire in vain. In the pure mathematics we contemplate absolute truths, which existed in the divine mind before the morning stars sang together, and which will continue to exist there, when the last of their radiant host shall have fallen from heaven." (Edward Everett, "Orations and Speeches" Vol. 8, 1870)
"I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetic act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding; the simplest act is the passing from an already-formed individual to the consecutive new one to be formed. The chain of these numbers forms in itself an exceedingly useful instrument for the human mind; it presents an inexhaustible wealth of remarkable laws obtained by the introduction of the four fundamental operations of arithmetic. Addition is the combination of any arbitrary repetitions of the above-mentioned simplest act into a single act; from it in a similar way arises multiplication. While the performance of these two operations is always possible, that of the inverse operations, subtraction and division, proves to be limited. Whatever the immediate occasion may have been, whatever comparisons or analogies with experience, or intuition, may have led thereto; it is certainly true that just this limitation in performing the indirect operations has in each case been the real motive for a new creative act; thus negative and fractional numbers have been created by the human mind; and in the system of all rational numbers there has been gained an instrument of infinitely greater perfection." (Richard Dedekind, "On Continuity and Irrational Numbers", 1872)
"The Infinite is often confounded with the Indefinite, but the two conceptions are diametrically opposed. Instead of being a quantity with unassigned yet assignable limits, the Infinite is not a quantity at all, since it neither admits of augmentation nor diminution, having no assignable limits; it is the operation of continuously withdrawing any limits that may have been assigned: the endless addition of new quantities to the old: the flux of continuity. The Infinite is no more a quantity than Zero is a quantity. If Zero is the sign of a vanished quantity, the Infinite is a sign of that continuity of Existence which has been ideally divided into discrete parts in the affixing of limits." (George H. Lewes, "Problems of Life and Mind", 1873)
"Human existence is girt round with mystery: the narrow region of our experience is a small island in the midst of a boundless sea. To add to the mystery, the domain of our earthly existence is not only an island of infinite space, but also in infinite time. The past and the future are alike shrouded from us: we neither know the origin of anything which is, nor its final destination." (John S Mill, "Nature, The Utility of Religion and Theism", 1874)
"I am convinced that it is impossible to expound the methods of induction in a sound manner, without resting them on the theory of probability. Perfect knowledge alone can give certainty, and in nature perfect knowledge would be infinite knowledge, which is clearly beyond our capacities. We have, therefore, to content ourselves with partial knowledge, - knowledge mingled with ignorance, producing doubt." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)
"In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, „The Principles of Science: A Treatise on Logic and Scientific Method", 1874)
"One microscopic glittering point; then another; and another, and still another; they are scarcely perceptible, yet they are enormous. This light is a focus; this focus, a star; this star, a sun; this sun, a universe; this universe, nothing. Every number is zero in the presence of the infinite." (Victor Hugo, "The Toilers of the Sea", 1874)
"Simplicity is naturally agreeable to a mind of limited powers, but to an infinite mind all things are simple." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)
"The Infinite is often confounded with the Indefinite, but the two conceptions are diametrically opposed. Instead of being a quantity with unassigned yet assignable limits, the Infinite is not a quantity at all, since it neither admits of augmentation nor diminution, having no assignable limits; it is the operation of continuously withdrawing any limits that may have been assigned: the endless addition of new quantities to the old: the flux of continuity. The Infinite is no more a quantity than Zero is a quantity. If Zero is the sign of a vanished quantity, the Infinite is a sign of that continuity of Existence which has been ideally divided into discrete parts in the affixing of limits." (George H Lewes, "Problems of Life and Mind", Vol. 2, 1875)
"There is a certain spiral of a peculiar form on which a point may have been approaching for centuries the center, and have nearly reached it, before we discover that its rate of approach is accelerated. The first thought of the observer, on seeing the acceleration, would be to say that it would reach the center sooner than he had before supposed. But as the point comes near the center it suddenly, although still moving under the same simple law as from the beginning, makes a very short turn upon its path and flies off rapidly almost in a straight line, out to an infinite distance. This illustrates that apparent breach of continuity which we sometimes find in a natural law; that apparently sudden change of character which we sometimes see in man." (Thomas Hill, "Uses of Mathesis", Bibliotheca Sacra Vol. 32, 1875)
"In infinite time, in infinite matter, in infinite space, is formed a bubble organism, and that bubble lasts a while and bursts, and that bubble is Me." (Lev Tolstoy, "Anna Karenina", 1877)
"Mathematics is not a book confined within a cover and bound between brazen clasps, whose contents it needs only patience to ransack; it is not a mine, whose treasures may take long to reduce into possession, but which fill only a limited number of veins and lodes; it is not a soil, whose fertility can be exhausted by the yield of successive harvests; it is not a continent or an ocean, whose area can be mapped out and its contour defined; it is as limitless as the space which it finds too narrow for its aspirations; its possibilities are as infinite as the worlds which are forever crowding in and multiplying upon the astronomer's gaze; it is incapable of being restricted within assigned boundaries or being reduced to definitions of permanent validity as the consciousness, the life, which seems to slumber in each monad, in every atom of matter, in each leaf and bud and cell and is forever ready to burst forth into new forms of vegetable and animal existence. " (James J Sylvester, "The Educational Times", 1877)
"The simplicity of nature which we at present grasp is really the result of infinite complexity; and that below the uniformity there underlies a diversity whose depths we have not yet probed, and whose secret places are still beyond our reach." (William Spottiswoode, [Report of the Forty-eighth Meeting of the British Association for the, Advancement of Science] 1878)
No comments:
Post a Comment