09 November 2025

On Physics (2010-2019)

"[...] according to the quantum theory, randomness is a basic trait of reality, whereas in classical physics it is a derivative property, though an equally objective one. Note, however, that this conclusion follows only under the realist interpretation of probability as the measure of possibility. If, by contrast, one adopts the subjectivist or Bayesian conception of probability as the measure of subjective uncertainty, then randomness is only in the eye of the beholder." (Mario Bunge, "Matter and Mind: A Philosophical Inquiry", 2010)

"Another feature of Bourbaki is that it rejects intuition of any kind. Bourbaki books tend not to contain explanations, examples, or heuristics. One of the main messages of the present book is that we record mathematics for posterity in a strictly rigorous, axiomatic fashion. This is the mathematician’s version of the reproducible experiment with control used by physicists and biologists and chemists. But we learn mathematics, we discover mathematics, we create mathematics using intuition and trial and error. We draw pictures. Certainly, we try things and twist things around and bend things to try to make them work. Unfortunately, Bourbaki does not teach any part of this latter process." (Steven G Krantz, "The Proof is in the Pudding: The Changing Nature of Mathematical Proof", 2010)

"The objectivist view is that probabilities are real aspects of the universe - propensities of objects to behave in certain ways - rather than being just descriptions of an observer’s degree of belief. For example, the fact that a fair coin comes up heads with probability 0.5 is a propensity of the coin itself. In this view, frequentist measurements are attempts to observe these propensities. Most physicists agree that quantum phenomena are objectively probabilistic, but uncertainty at the macroscopic scale - e.g., in coin tossing - usually arises from ignorance of initial conditions and does not seem consistent with the propensity view." (Stuart J Russell & Peter Norvig, "Artificial Intelligence: A Modern Approach", 2010)

"There are actually two sides to the success of mathematics in explaining the world around us (a success that Wigner dubbed ‘the unreasonable effectiveness of mathematics’), one more astonishing than the other. First, there is an aspect one might call ‘active’. When physicists wander through nature’s labyrinth, they light their way by mathematics - the tools they use and develop, the models they construct, and the explanations they conjure are all mathematical in nature. This, on the face of it, is a miracle in itself. […] But there is also a ‘passive’ side to the mysterious effectiveness of mathematics, and it is so surprising that the 'active' aspect pales by comparison. Concepts and relations explored by mathematicians only for pure reasons - with absolutely no application in mind - turn out decades (or sometimes centuries) later to be the unexpected solutions to problems grounded in physical reality!" (Mario Livio, "Is God a Mathematician?", 2011)

"Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’ […] This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics." (John C Baez, "Division Algebras and Quantum Theory", 2011)

"Understanding chaos requires much less advanced mathematics than other current areas of physics research such as general relativity or particle physics. Observing chaos and fractals requires no specialized equipment; chaos is seen in scores of everyday phenomena - a boiling pot of water, a dripping faucet, shifting weather patterns. And fractals are almost ubiquitous in the natural world. Thus, it is possible to teach the central ideas and insights of chaos in a rigorous, genuine, and relevant way to students with relatively little mathematics background." (David P Feldman, "Chaos and Fractals: An Elementary Introduction", 2012)

"To understand the precise point when the possible becomes the impossible, you have to appreciate and understand the laws of physics." (Michio Kaku, "The Future of the Mind: The Scientific Quest to Understand, Enhance, and Empower the Mind", 2014)

"[…] the role that symmetry plays is not confined to material objects. Symmetries can also refer to theories and, in particular, to quantum theory. For if the laws of physics are to be invariant under changes of reference frames, the set of all such transformations will form a group. Which transformations and which groups depends on the systems under consideration." (William H Klink & Sujeev Wickramasekara, "Relativity, Symmetry and the Structure of Quantum Theory I: Galilean quantum theory", 2015)

"The passage of time and the action of entropy bring about ever-greater complexity - a branching, blossoming tree of possibilities. Blossoming disorder (things getting worse), now unfolding within the constraints of the physics of our universe, creates novel opportunities for spontaneous ordered complexity to arise." (D J MacLennan, "Frozen to Life", 2015)

"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh, "Mathematics as an Empirical Phenomenon, Subject to Modeling", 2017)

"In mathematics, pendulums stimulated the development of calculus through the riddles they posed. In physics and engineering, pendulums became paradigms of oscillation. […] In some cases, the connections between pendulums and other phenomena are so exact that the same equations can be recycled without change. Only the symbols need to be reinterpreted; the syntax stays the same. It’s as if nature keeps returning to the same motif again and again, a pendular repetition of a pendular theme. For example, the equations for the swinging of a pendulum carry over without change to those for the spinning of generators that produce alternating current and send it to our homes and offices. In honor of that pedigree, electrical engineers refer to their generator equations as swing equations." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Dimensions (2010-2019)

  "Strange attractors, unlike regular ones, are geometrically very complicated, as revealed by the evolution of a small phase-space vol...