10 November 2025

On Dimensions (-1849)

"The objection we are dealing with argues from the standpoint of an agent that presupposes time and acts in time, but did not institute time. Hence the question about 'why God's eternal will produces an effect now and and not earlier' presupposes that time exists; for 'now' and 'earlier' are segments of time. With regard to the universal production of things, among which time is also to be counted, we should not ask, 'Why now and not earlier?' Rather we should ask: 'Why did God wish this much time to intervene?' And this depends on the divine will, which is perfectly free to assign this or any other quantity to time. The same may be noted with respect to the dimensional quantity of the world. No one asks why God located the material world in such and such a place rather than higher up or lower down or in some other position; for there is no place outside the world. The fact that God portioned out so much quantity to the world that no part of it would be beyond the place occupied in some other locality, depends on the divine will. However, although there was no time prior to the world and no place outside the world, we speak as if there were. Thus we say that before the world existed there was nothing except God, and that there is no body lying outside the world. But in thus speaking of 'before' and 'outside,' we have in mind nothing but time and place as they exist in our imagination." (Thomas Aquinas, "Compendium Theologiae" ["Compendium of Theology"], cca. 1265 [unfinished])

"Of all the theorems of analysis situs, the most important is that which we express by saying that space has three dimensions. It is this proposition that we are about to consider, and we shall put the question in these terms: when we say that space has three dimensions, what do we mean?" (Witold Hurewicz & Henry H. Wallman's, "Dimension Theory", 1948)

"The trouble with integers is that we have examined only the small ones. Maybe all the exciting stuff happens at really big numbers, ones we can’t get our hand on or even begin to think about in any very definite way. So maybe all the action is really inaccessible and we’re just fiddling around. Our brains have evolved to get us out of the rain, find where the berries are, and keep us from getting killed. Our brains did not evolve to help us grasp really large numbers or to look at things in a hundred thousand dimensions." (Paul Hauffman,"The Man Who Loves Only Numbers", The Atlantic Magazine, Vol 260, No 5, 1987)

"[…] whereas Nature, in propriety of Speech, doth not admit more than Three" (Local) Dimensions," (Length, Breadth and Thickness, in Lines, Surfaces and Solids) it may justly seem improper to talk of a Solid" (of three Dimensions) drawn into a Fourth, Fifth, Sixth, or further Dimension." (John Wallis, "Treatise of Algebra", 1685)

"As magnitude, of every sort, abstractedly considered, is capable of being increased to infinity, and is also divisible without end; so we find that, in nature, the limits of the greatest and least dimensions of things, are actually placed at an immense distance from each other." (Colin Maclaurin, "An Account of Sir Isaac Newton’s Philosophical Discoveries", 1748)

"Geometry is that of mathematical science which is devoted to consideration of form and size, and may be said to be the best and surest guide to study of all sciences in which ideas of dimension or space are involved. Almost all the knowledge required by navigators, architects, surveyors, engineers, and opticians, in their respective occupations, is deduced from geometry and branches of mathematics. All works of art are constructed according to the rules which geometry involves; and we find the same laws observed in the works of nature. The study of mathematics, generally, is also of great importance in cultivating habits of exact reasoning; and in this respect it forms a useful auxiliary to logic." (William Chambers & Robert Chambers, "Chambers's Information for the People" Vol. 2, 1835)

"Those who can, in common algebra, find a square root of -1, will be at no loss to find a fourth dimension in space in which ABC may become ABCD: or, if they cannot find it, they have but to imagine it, and call it an impossible dimension, subject to all the laws of the three we find possible. And just as √-1 in common algebra, gives all its significant combinations true, so would it be with any number of dimensions of space which the speculator might choose to call into impossible existence." (Augustus De Morgan, "Trigonometry and Double Algebra", 1849) 



No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Dimensions (2010-2019)

  "Strange attractors, unlike regular ones, are geometrically very complicated, as revealed by the evolution of a small phase-space vol...