01 November 2025

On Games (1990-1999)

"And you should not think that the mathematical game is arbitrary and gratuitous. The diverse mathematical theories have many relations with each other: the objects of one theory may find an interpretation in another theory, and this will lead to new and fruitful viewpoints. Mathematics has deep unity. More than a collection of separate theories such as set theory, topology, and algebra, each with its own basic assumptions, mathematics is a unified whole." (David Ruelle, "Chance and Chaos", 1991)

"Game theory can be defined as the study of mathematical models of conflict and cooperation between intelligent rational decision-makers." (Roger B Myerson, "Game Theory: Analysis of Conflict", 1991)

"Independence of thought is a most valuable quality in a chess-player, both at the board and when preparing for a game." (David Bronstein, "200 Open Games", 1991)

"Probability does pervade the universe, and in this sense, the old chestnut about baseball imitating life really has validity. The statistics of streaks and slumps, properly understood, do teach an important lesson about epistemology, and life in general. The history of a species, or any natural phenomenon, that requires unbroken continuity in a world of trouble, works like a batting streak. All are games of a gambler playing with a limited stake against a house with infinite resources. The gambler must eventually go bust. His aim can only be to stick around as long as possible, to have some fun while he's at it, and, if he happens to be a moral agent as well, to worry about staying the course with honor!" (Stephen J Gould, 1991)

"The cybernetics phase of cognitive science produced an amazing array of concrete results, in addition to its long-term (often underground) influence: the use of mathematical logic to understand the operation of the nervous system; the invention of information processing machines (as digital computers), thus laying the basis for artificial intelligence; the establishment of the metadiscipline of system theory, which has had an imprint in many branches of science, such as engineering (systems analysis, control theory), biology (regulatory physiology, ecology), social sciences" (family therapy, structural anthropology, management, urban studies), and economics (game theory); information theory as a statistical theory of signal and communication channels; the first examples of self-organizing systems. This list is impressive: we tend to consider many of these notions and tools an integrative part of our life […]" (Francisco Varela, "The Embodied Mind", 1991)

"An example, which, like tossing a coin, is intimately associated with games of chance, is the shuffling of a deck of cards. […] the process is not completely random, if by what happens next we mean the outcome of the next single riffle, since one riffle cannot change any given order of the cards in the deck to any other given order. In particular, a single riffle cannot completely reverse the order of the cards, although a sufficient number of successive riffles, of course, can produce any order." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Because chaos is deterministic, or nearly so, games of chance should not be expected to provide us with simple examples, but games that appear to involve chance ought to be able to take their place. Among the devices that can produce chaos, the one that is nearest of kin to the coin or the deck of cards may well be the pinball machine. It should be an old-fashioned one, with no flippers or flashing lights, and with nothing but simple pins to disturb the free roll of the ball until it scores or becomes dead." (Edward N Lorenz, "The Essence of Chaos", 1993)

"It is true that every aspect of the roll of dice may be suspect: the dice themselves, the form and texture of the surface, the person throwing them. If we push the analysis to its extreme, we may even wonder what chance has to do with it at all. Neither the course of the dice nor their rebounds rely on chance; they are governed by the strict determinism of rational mechanics. Billiards is based on the same principles, and it has never been considered a game of chance. So in the final analysis, chance lies in the clumsiness, the inexperience, or the naiveté of the thrower - or in the eye of the observer." (Ivar Ekeland, "The Broken Dice, and Other Mathematical Tales of Chance", 1993)

"When the pinball game is treated as a flow instead of a mapping, and a simple enough system of differential equations is used as a model, it may be possible to solve the equations. A complete solution will contain expressions that give the values of the variables at any given time in terms of the values at any previous time. When the times are those of consecutive strikes on a pin, the expressions will amount to nothing more than a system of difference equations, which in this case will have been derived by solving the differential equations. Thus a mapping will have been derived from a flow." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Chess players recognize and applaud good play, from a single smart move to a brilliant combination to an entire game which is considered a masterpiece. Mathematicians recognize and applaud good mathematics, from clever tricks to brilliant proofs, and from beautiful conceptions to grand and deep ideas which advance our understanding of mathematics as a whole. It takes imagination and insight to discover the best moves, at chess or mathematics, and the more difficult the position, the harder they are to find. Chess players learn by experience to recognize types of positions and situations and to know what kind of moves are likely to be successful; they exploit brilliant local tactics as well as deep stategical ideas. So do mathematicians. Neither games nor mathematics play themselves - they both need a player with understanding, good ideas, judgement and discrimination to play them. To develop these essential attributes, the player must explore the game by playing it, thinking about it and analysing it. For the chess player and the mathematician, this process is scientific: you test ideas, experiment with new possibilities, develop the ones that work and discard the ones that fail. This is how chess players and mathematicians develop their tactical and strategical understanding; it is how they give meaning to chess and mathematics." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"[…] a rule for choosing an action is termed a strategy. If the rule says to always take the same action, it's called a pure strategy; otherwise, the strategy is called mixed. A solution to a game is simply a strategy for each player that gives each of them the best possible payoff, in the sense of being a regret-free choice." (John L Casti, "Five Golden Rules", 1995)

"It is typical that there is more than one way of looking at a geometrical figure, just as there are many ways of looking at lines of algebra. Perception, 'seeing', is an essential feature of mathematics. This is obvious when we are looking for patterns - how can you possibly 'spot' a pattern if you cannot in some sense 'see' it? But it is just as true when the mathematician is looking for hidden connections, or studying a position in a mathematical game, searching for a tactical sequence, or trying to 'see' the possibilities clearly. Superficially, it might seem that it is only geometry (and related fields of mathematics) that depends on perception, but this is not so. Perception is everywhere in mathematics." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"Mathematics-as-science naturally starts with mysterious phenomena to be explained, and leads (if you are successful) to powerful and harmonious patterns. Mathematics-as-a-game not only starts with simple objects and rules, but involves all the attractions of games like chess: neat tactics, deep strategy, beautiful combinations, elegant and surprising ideas. Mathematics-as-perception displays the beauty and mystery of art in parallel with the delight of illumination, and the satisfaction of feeling that now you understand." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"Mathematics is not the study of an ideal, preexisting nontemporal reality. Neither is it a chess-like game with made-up symbols and formulas. Rather, it is the part of human studies which is capable of achieving a science-like consensus, capable of establishing reproducible results. The existence of the subject called mathematics is a fact, not a question. This fact means no more and no less than the existence of modes of reasoning and argument about ideas which are compelling an conclusive, ‘noncontroversial when once understood’." (Philip J Davis & Rueben Hersh, "The Mathematical Experience", 1995)

"No, nature is, in its own subtle way, simple. However, those simplicities do not present themselves to us directly. Instead, nature leaves clues for the mathematical detectives to puzzle over. It's a fascinating game, even to a spectator. And it's an absolutely irresistible one if you are a mathematical Sherlock Holmes." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Playing the game of mathematics is much harder than investigating scientifically! To jot down some numbers, a few differences, and spot a pattern is child's play compared to playing the game of algebra." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"So the strategy of mixing the choices with equal likelihood is an equilibrium point for the game, in the same sense that the minimax point is an equilibrium for a game having a saddle point. Thus, using a strategy that randomizes their choices, Max and Min can each announce his or her strategy to the other without the opponent being able to exploit this information to get a larger average payoff for himself or herself." (John L Casti, "Five Golden Rules", 1995)

"The Minimax Theorem applies to games in which there are just two players and for which the total payoff to both parties is zero, regardless of what actions the players choose. The advantage of these two properties is that with two players whose interests are directly opposed we have a game of pure competition, which allows us to define a clear-cut mathematical notion of rational behavior that leads to a single, unambiguous rule as to how each player should behave." (John L Casti, "Five Golden Rules", 1995)

"To talk about sensemaking is to talk about reality as an ongoing accomplishment that takes form when people make retrospective sense of the situations in which they find themselves and their creations. There is a strong reflexive quality to this process. People make sense of things by seeing a world on which they already imposed what they believe. In other words, people discover their own inventions. This is why sensemaking can be understood as invention and interpretations understood as discovery. These are complementary ideas. If sensemaking is viewed as an act of invention, then it is also possible to argue that the artifacts it produces include language games and texts." (Karl E Weick, "Sensemaking in Organizations", 1995)

"What's important about a saddle point is that it represents a decision by the two players that neither can improve upon by unilaterally departing from it. In short, either player can announce such a choice in advance to the other player and suffer no penalty by doing so. Consequently, the best choice for each player is at the saddle point, which is called a 'solution' to the game in pure strategies. This is because regardless of the number of times the game is played, the optimal choice for each player is to always take his or her saddle-point decision. […] the saddle point is at the same time the highest point on the payoff surface in one direction and the lowest in the other direction. Put in algebraic terms using the payoff matrix, the saddle point is where the largest of the row minima coincides with the smallest of the column maxima." (John L Casti, "Five Golden Rules", 1995)

"But real-life situations often require us to measure probability in precisely this fashion - from sample to universe. In only rare cases does life replicate games of chance, for which we can determine the probability of an outcome before an event even occurs - a priori […] . In most instances, we have to estimate probabilities from what happened after the fact - a posteriori. The very notion of a posteriori implies experimentation and changing degrees of belief." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"In a mathematical sense a zero-sum game is a loser's game when it is valued in terms of utility. The best decision for both is to refuse to play this game." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Losing streaks and winning streaks occur frequently in games of chance, as they do in real life. Gamblers respond to these events in asymmetric fashion: they appeal to the law of averages to bring losing streaks to a speedy end. And they appeal to that same law of averages to suspend itself so that winning streaks will go on and on. The law of averages hears neither appeal. The last sequence of throws of the dice conveys absolutely no information about what the next throw will bring. Cards, coins, dice, and roulette wheels have no memory." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The resolution of how to divide the stakes in an uncompleted game marked the beginning of a systematic analysis of probability - the measure of our confidence that something is going to happen. It brings us to the threshold of the quantification of risk." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"Game theory is a theory of strategic interaction. That is to say, it is a theory of rational behavior in social situations in which each player has to choose his moves on the basis of what he thinks the other players' countermoves are likely to be." (John Harsanyi, "Games with Incomplete Information", 1997)

"In principle, every social situation involves strategic interaction among the participants. Thus, one might argue that proper understanding of any social situation would require game-theoretic analysis. But in actual fact, classical economic theory did manage to sidestep the game-theoretic aspects of economic behavior by postulating perfect competition, i. e., by assuming that every buyer and every seller is very small as compared with the size of the relevant markets, so that nobody can significantly affect the existing market prices by his actions." (John Harsanyi, "Games with Incomplete Information" 1997)

"Mathematical logic deals not with the truth but only with the game of truth." (Gian-Carlo Rota,"Indiscrete Thoughts", 1997)

"Mathematical logic deals not with the truth but only with the game of truth." (Gian-Carlo Rota,"Indiscrete Thoughts", 1997)

"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a 'state' of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Like all of mathematics, game theory is a tautology whose conclusions are true because they are contained in the premises." (Thomas Flanagan, "Game Theory and Canadian Politics", 1998)

"A random walk is one in which future steps or directions cannot be predicted on the basis of past history. When the term is applied to the stock market, it means that short-run changes in stock prices are unpredictable. Investment advisory services, earnings forecasts, and chart patterns are useless. [...] What are often called 'persistent patterns' in the stock market occur no more frequently than the runs of luck in the fortunes of any gambler playing a game of chance. This is what economists mean when they say that stock prices behave very much like a random walk." (Burton G Malkiel, "A Random Walk Down Wall Street", 1999)

"From the moment we first roll a die in a children's board game, or pick a card (any card), we start to learn what probability is. But even as adults, it is not easy to tell what it is, in the general way." (David Stirzaker, "Probability and Random Variables: A Beginner's Guide", 1999)

"The first view of randomness is of clutter bred by complicated entanglements. Even though we know there are rules, the outcome is uncertain. Lotteries and card games are generally perceived to belong to this category. More troublesome is that nature's design itself is known imperfectly, and worse, the rules may be hidden from us, and therefore we cannot specify a cause or discern any pattern of order. When, for instance, an outcome takes place as the confluence of totally unrelated events, it may appear to be so surprising and bizarre that we say that it is due to blind chance." (Edward Beltrami. "What is Random?: Chance and Order in Mathematics and Life", 1999)

"Winning and losing is not simply a pastime; it is the model science uses to explore the universe. Flipping a coin or rolling a die is really asking a question: success or failure can be defined as getting a yes or no. So the distribution of probabilities in a game of chance is the same as that in any repeated test - even though the result of any one test is unpredictable." (John Haigh," Taking Chances: Winning With Probability", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Game Theory (2000-)

"An equilibrium is not always an optimum; it might not even be good. This may be the most important discovery of game theory." (Iv...