"Chaos theory reconciles our intuitive sense of free will with the deterministic laws of nature. However, it has an even deeper philosophical ramification. Not only do we have freedom to control our actions, but also the sensitivity to initial conditions implies that even our smallest act can drastically alter the course of history, for better or for worse. Like the butterfly flapping its wings, the results of our behavior are amplified with each day that passes, eventually producing a completely different world than would have existed in our absence!" (Julien C Sprott, "Strange Attractors: Creating Patterns in Chaos", 2000)
"In chaology, the initial conditions are likely to be out of all proportion to the consequences; indeed, origins are much more random, unpredictable, and unknowable and seemingly much less directly causal than in orderly systems. The sensitive dependence upon initial conditions means that similar phenomena or systems will never be wholly identical and that the results of those small initial changes may be radically different. These unpredictable initial conditions may, for instance, lead to the so-called butterfly effect, in which an extremely minor and remote act causes disruptions of a huge magnitude." (Gordon E Slethaug, "Beautiful Chaos: Chaos theory and metachaotics in recent American fiction", 2000)
"We often wonder why the more complex systems seem to indicate a preferred direction of time, or an arrow of time, whereas their elementary counterparts do not. […] This has to do with the if-then nature of physics questions. Anything we observe involves laws of motion but also particular initial conditions. […] The initial conditions are what make a situation look peculiar when we time reverse it." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)
"Much of chaos as a science is connected with the notion of ‘sensitive dependence on initial conditions.’ Technically, scientists term as ‘chaotic’ those nonrandom complicated motions that exhibit a very rapid growth of errors that, despite perfect determinism, inhibits any pragmatic ability to render accurate long-term prediction. […] The most important fact is that there is a discernibly precise ‘moment’, with a corresponding behavior, which is neither chaotic nor nonchaotic, at which this transition occurs. Yes, errors do grow, but only in a marginally predictable, rather than in an unpredictable, fashion. In this state of marginal predictability inheres embryonically all the seeds of the chaotic behavior to come. That is, this transitional point, the legitimate child of universality, without full-fledged sensitive dependence upon initial conditions, knows fully how to dictate to its progeny in turn how this latter phenomenon must unfold. For a certain range of possible behaviors of strongly nonlinear systems - specifically, this range surrounding the transition to chaos - the information obtained just at the transition point fully organizes the spectrum of behaviors that these chaotic systems can exhibit." (Ray Kurzweil, "The Singularity is Near", 2005)
"Chaos can leave statistical footprints that look like noise. This can arise from simple systems that are deterministic and not random. [...] The surprising mathematical fact is that most systems are chaotic. Change the starting value ever so slightly and soon the system wanders off on a new chaotic path no matter how close the starting point of the new path was to the starting point of the old path. Mathematicians call this sensitivity to initial conditions but many scientists just call it the butterfly effect. And what holds in math seems to hold in the real world - more and more systems appear to be chaotic." (Bart Kosko, "Noise", 2006)
"Physically, the stability of the dynamics is characterized by the sensitivity to initial conditions. This sensitivity can be determined for statistically stationary states, e.g. for the motion on an attractor. If this motion demonstrates sensitive dependence on initial conditions, then it is chaotic. In the popular literature this is often called the 'Butterfly Effect', after the famous 'gedankenexperiment' of Edward Lorenz: if a perturbation of the atmosphere due to a butterfly in Brazil induces a thunderstorm in Texas, then the dynamics of the atmosphere should be considered as an unpredictable and chaotic one. By contrast, stable dependence on initial conditions means that the dynamics is regular." (Ulrike Feudel et al, "Strange Nonchaotic Attractors", 2006)
"This phenomenon, common to chaos theory, is also known as sensitive dependence on initial conditions. Just a small change in the initial conditions can drastically change the long-term behavior of a system. Such a small amount of difference in a measurement might be considered experimental noise, background noise, or an inaccuracy of the equipment." (Greg Rae, Chaos Theory: A Brief Introduction, 2006)
"Global stability of an equilibrium removes the restrictions on the initial conditions. In global asymptotic stability, solutions approach the equilibrium for all initial conditions. [...] In a study of local stability, first equilibrium solutions are identified, then linearization techniques are applied to determine the behavior of solutions near the equilibrium. If the equilibrium is stable for any set of initial conditions, then this type of stability is referred to as global stability." (Linda J S Allen, "An Introduction to Mathematical Biology", 2007)
"Sensitive dependence on initial conditions is one of the criteria necessary for showing a solution to a difference equation exhibits chaotic behavior." (Linda J S Allen, "An Introduction to Mathematical Biology", 2007)
"A characteristic of such chaotic dynamics is an extreme sensitivity to initial conditions (exponential separation of neighboring trajectories), which puts severe limitations on any forecast of the future fate of a particular trajectory. This sensitivity is known as the ‘butterfly effect’: the state of the system at time t can be entirely different even if the initial conditions are only slightly changed, i.e., by a butterfly flapping its wings." (Hans J Korsch et al, "Chaos: A Program Collection for the PC", 2008)
"The 'butterfly effect' is at most a hypothesis, and it was certainly not Lorenz’s intention to change it to a metaphor for the importance of small event. […] Dynamical systems that exhibit sensitive dependence on initial conditions produce remarkably different solutions for two initial values that are close to each other. Sensitive dependence on initial conditions is one of the properties to exhibit chaotic behavior. In addition, at least one further implicit assumption is that the system is bounded in some finite region, i.e., the system cannot blow up. When one uses expanding dynamics, a way of pull-back of too much expanded phase volume to some finite domain is necessary to get chaos." (Péter Érdi, "Complexity Explained", 2008)
"Chaos has three primary features: unpredictability, boundedness, and sensitivity to initial conditions. Unpredictability means that a sequence of numbers that is generated from a chaotic function does not repeat. This principle is perhaps a matter of degree, because some of the numbers could look as though they are recurring only because they are rounded to a convenient number of decimal points. [...] Boundedness means that, for all the unpredictability of motion, all points remain within certain boundaries. The principle of sensitivity to initial conditions means that two points that start off as arbitrarily close together become exponentially farther away from each other as the iteration process proceeds. This is a clear case of small differences producing a huge effect." (Stephen J Guastello & Larry S Liebovitch, "Introduction to Nonlinear Dynamics and Complexity" [in "Chaos and Complexity in Psychology"], 2009)
No comments:
Post a Comment