29 September 2024

On Arithmetic (1875 - 1899)

 "I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetical act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding […]" (Richard Dedekind, "On Continuity and Irrational Numbers", 1872)

"The most distinct and beautiful statement of any truth [in science] must take at last the mathematical form. We might so simplify the rules of moral philosophy, as well as of arithmetic, that one formula would express them both." (Henry Thoreau, "A Week on the Concord and Merrimack Rivers", 1873)

"Thought is symbolical of Sensation as Algebra is of Arithmetic, and because it is symbolical, is very unlike what it symbolises. For one thing, sensations are always positive; in this resembling arithmetical quantities. A negative sensation is no more possible than a negative number. But ideas, like algebraic quantities, may be either positive or negative. However paradoxical the square of a negative quantity, the square root of an unknown quantity, nay, even in imaginary quantity, the student of Algebra finds these paradoxes to be valid operations. And the student of Philosophy finds analogous paradoxes in operations impossible in the sphere of Sense. Thus although it is impossible to feel non-existence, it is possible to think it; although it is impossible to frame an image of Infinity, we can, and do, form the idea, and reason on it with precision." (George H Lewes "Problems of Life and Mind", 1873)

"Thus numbers may be said to rule the whole world of quantity, and the four rules of arithmetic may be regarded as the complete equipment of the mathematician." James C Maxwell, "Electricity and Magnetism", 1873)

"The rules of Arithmetic operate in Algebra; the logical operations supposed to be peculiar to Ideation operate in Sensation, There is but one Calculus, but one Logic; though for convenience we divide the one into Arithmetic the calculus of values, and Algebra the calculus of relations; the other into the Logic of Feeling and the Logic of Signs." (George H Lewes "Problems of Life and Mind", 1873)

"Algebra is but written geometry and geometry is but figured algebra." (Sophie Germain, "Mémoire sur la surfaces élastiques", 1880)

"I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction." (Gottlob Frege, "The Foundations of Arithmetic", 1884)

"In science nothing capable of proof ought to be accepted without proof. Though this demand seems so reasonable yet I cannot regard it as having been met even in […] that part of logic which deals with the theory of numbers. In speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that I consider the number concept entirely independent of the notions of intuition of space and time, that I consider it an immediate result from the laws of thought." (Richard Dedekind, "Was sind und was sollen die Zahlen?", 1888)

"Strictly speaking, the theory of numbers has nothing to do with negative, or fractional, or irrational quantities, as such. No theorem which cannot be expressed without reference to these notions is purely arithmetical: and no proof of an arithmetical theorem, can be considered finally satisfactory if it intrinsically depends upon extraneous analytical theories." (George B Mathews, "Theory of Numbers", 1892)

"I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems while the root drives into the depths." (Gottlob Frege, "Grundgesetze der Arithmetik", 1893) 

"Considering the remarkable elegance, generality, and simplicity of the method [Homer’s Method of finding the numerical values of the roots of an equation], it is not a little surprising that it has not taken a more prominent place in current mathematical textbooks. [...] As a matter of fact, its spirit is purely arithmetical; and its beauty, which can only be appreciated after one has used it in particular cases, is of that indescribably simple kind, which distinguishes the use of position in the decimal notation and the arrangement of the simple rules of arithmetic. It is, in short, one of those things whose invention was the creation of a commonplace." (George Chrystal, "Algebra", 1893)

"The object of all arithmetical operations is to save direct enumeration, by utilizing the results of our old operations of counting. Our endeavor is, having done a sum once, to preserve the answer for future use [...]. Such, too, is the purpose of algebra, which, substituting relations for values, symbolizes and definitely fixes all numerical operations which follow the same rule." (Ernst Mach, "The Science of Mechanics", 1893)

"The science of arithmetic may be called the science of exact limitation of matter and things in space, force, and time." (Francis W Parker, "Talks on Pedagogics", 1894),

"The best review of arithmetic consists in the study of algebra." (Florian Cajori, "Teaching and History of Mathematics in U. S.", 1896)

"Anyone who understands algebraic notation, reads at a glance in an equation results reached arithmetically only with great labour and pains." (A Augustin Cournot, "Researches Into the Mathematical Principles of the Theory of Wealth", 1897)

"In order to comprehend and fully control arithmetical concepts and methods of proof, a high degree of abstraction is necessary, and this condition has at times been charged against arithmetic as a fault. I am of the opinion that all other fields of knowledge require at least an equally high degree of abstraction as mathematics, - provided, that in these fields the foundations are also everywhere examined with the rigour and completeness which is actually necessary." (David Hilbert, "Die Theorie der algebraischen Zahlkorper", 1897)

"Mathematics in its pure form, as arithmetic, algebra, geometry, and the applications of the analytic method, as well as mathematics applied to matter and force, or statics and dynamics, furnishes the peculiar study that gives to us, whether as children or as men, the command of nature in this its quantitative aspect; mathematics furnishes the instrument, the tool of thought, which we wield in this realm." (William T  Harris, "Psychologic Foundations of Education", 1898)

"The laws of algebra, though suggested by arithmetic, do not depend on it. They depend entirely on the conventions by which it is stated that certain modes of grouping the symbols are to be considered as identical. This assigns certain properties to the marks which form the symbols of algebra. The laws regulating the manipulation of algebraic symbols are identical with those of arithmetic. It follows that no algebraic theorem can ever contradict any result which could be arrived at by arithmetic; for the reasoning in both cases merely applies the same general laws to different classes of things. If an algebraic theorem can be interpreted in arithmetic, the corresponding arithmetical theorem is therefore true." (Alfred N Whitehead, "Universal Algebra", 1898)

"The method of arithmetical teaching is perhaps the best understood of any of the methods concerned with elementary studies." (Alexander Bain, "Education as a Science",  1898)

On Arithmetic (1800 - 1849)

"Number theory is revealed in its entire simplicity and natural beauty when the field of arithmetic is extended to the imaginary numbers" (Carl F Gauss, "Disquisitiones arithmeticae" ["Arithmetical Researches"], 1801)

"The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. […] The dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated." (Carl F Gauss, "Disquisitiones Arithmeticae" ["Arithmetical Researches"], 1801)

"I am convinced more and more that the necessary truth of our geometry cannot be demonstrated, at least not by the human intellect to the human understanding. Perhaps in another world we may gain other insights into the nature of space which at present are unattainable to us. Until then we must consider geometry as of equal rank not with arithmetic, which is purely a priori, but with mechanics." (Carl F Gauss, [Letter to Olbers] 1817)

"It is characteristic of higher arithmetic that many of its most beautiful theorems can be discovered by induction with the greatest of ease but have proofs that lie anywhere but near at hand and are often found only after many fruitless investigations with the aid of deep analysis and lucky combinations." (Carl F Gauss, 1817)

"Our general arithmetic, so far surpassing in extent the geometry of the ancients, is entirely the creation of modern times. Starting originally from the notion of absolute integers, it has gradually enlarged its domain. To integers have been added fractions, to rational quantities the irrational, to positive the negative .and to the real the imaginary. This advance, however, has always been made at first with timorous and hesitating step. The early algebraists called the negative roots of equations false roots, and these are indeed so when the problem to which they relate has been stated in such a form that the character of the quantity sought allows of no opposite. But just as in general arithmetic no one would hesitate to admit fractions, although there are so many countable things where a fraction has no meaning, so we ought not to deny to, negative numbers the rights accorded to positive simply because innumerable things allow no opposite. The reality of negative numbers is sufficiently justified since in innumerable other cases they find an adequate substratum. This has long been admitted, but the imaginary quantities - formerly and occasionally now, though improperly, called impossible-as opposed to real quantities are still rather tolerated than fully naturalized, and appear more like an empty play upon symbols to which a thinkable substratum is denied unhesitatingly by those who would not depreciate the rich contribution which this play upon symbols has made to the treasure of the relations of real quantities." (Carl F Gauss, "Theoria residuorum biquadraticorum, Commentatio secunda", Göttingische gelehrte Anzeigen, 1831)

"What would life be like without arithmetic, but a scene of horrors?" (Sydney Smith, "Letter 692]  [in "The Letters of Sydney Smith" Vol.2] 1835)

"The science of algebra, independently of any of its uses, has all the advantages which belong to mathematics in general as an object of study, and which it is not necessary to enumerate. Viewed either as a science of quantity, or as a language of symbols, it may be made of the greatest service to those who are sufficiently acquainted with arithmetic, and who have sufficient power of comprehension to enter fairly upon its difficulties." (Augustus de Morgan, "Elements of Algebra", 1837)

"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1840)

"Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space." (James J Sylvester, "A Probationary Lecture on Geometry", 1844)

"The Higher Arithmetic presents us with an inexhaustible storehouse of interesting truths - of truths, too, which are not isolated but stand in the closest relation to one another, and between which, with each successive advance of the science, we continually discover new and sometimes wholly unexpected points of contact. A great part of the theories of Arithmetic derive an additional charm from the peculiarity that we easily arrive by induction at important propositions which have the stamp of simplicity upon them but the demonstration of which lies so deep as not to be discovered until after many fruitless efforts; and even then it is obtained by some tedious and artificial process while the simpler methods of proof long remain hidden from us." (Carl F Gauss, [introduction to Gotthold Eisenstein’s "Mathematische Abhandlungen"] 1847)

"Geometrical reasoning, and arithmetical process, have each its own office: to mix the two in elementary instruction, is injurious to the proper acquisition of both." (Augustus De Morgan, "Trigonometry and Double Algebra", 1849)

On Arithmetic (1850 - 1874)

"[Algebra] has for its object the resolution of equations; taking this expression in its full logical meaning, which signifies the transformation of implicit functions into equivalent explicit ones. In the same way arithmetic may be defined as destined to the determination of the values of functions. […] We will briefly say that Algebra is the Calculus of functions, and Arithmetic is the Calculus of Values." (Auguste Comte, "Philosophy of Mathematics", 1851)

"For what is the theory of determinants? It is an algebra upon algebra; a calculus which enables us to combine and foretell the results of algebraical operations, in the same way as algebra itself enable us to dispense with the performance of the special operations of arithmetic. All analysis must ultimately clothe itself under this form." (James J Sylvester, "On the Relation Between the Minor Determinants of Linearly Equivalent", [in "The Collected Mathematical Papers of James Joseph Sylvester" Vol. I)  1851)

"That arithmetic is the basest of all mental activities is proved by the fact that it is the only one that can be accomplished by means of a machine." (Arthur Schopenhauer, "Psychological Observations" [in  "Parerga and Paralipomena"] 1851)

"The ideas which these sciences, Geometry, Theoretical Arithmetic and Algebra involve extend to all objects and changes which we observe in the external world; and hence the consideration of mathematical relations forms a large portion of many of the sciences which treat of the phenomena and laws of external nature, as Astronomy, Optics, and Mechanics. Such sciences are hence often termed Mixed Mathematics, the relations of space and number being, in these branches of knowledge, combined with principles collected from special observation; while Geometry, Algebra, and the like subjects, which involve no result of experience, are called Pure Mathematics." (William Whewell, "The Philosophy of the Inductive Sciences" , 1858)

"These sciences, Geometry, Theoretical Arithmetic and Algebra, have no principles besides definitions and axioms, and no process of proof but deduction; this process, however, assuming a most remarkable character; and exhibiting a combination of simplicity and complexity, of rigour and generality, quite unparalleled in other subjects." (William Whewell, "The Philosophy of the Inductive Sciences", 1858)

"It is better to teach the child arithmetic and Latin grammar than rhetoric and moral philosophy, because they require exactitude of performance it is made certain that the lesson is mastered, and that power of performance is worth more than knowledge." (Ralph W Emerson, "Lecture on Education", 1853)

"Let him [the author] be permitted also in all humility to add ... that in consequence of the large arrears of algebraical and arithmetical speculations waiting in his mind their turn to be called into outward existence, he is driven to the alternative of leaving the fruits of his meditations to perish (as has been the fate of too many foregone theories, the still-born progeny of his brain, now forever resolved back again into the primordial matter of thought), or venturing to produce from time to time such imperfect sketches as the present, calculated to evoke the mental co-operation of his readers, in whom the algebraical instinct has been to some extent developed, rather than to satisfy the strict demands of rigorously systematic exposition." (James J Sylvester, Philosophic Magazine, 1863) 

"Arithmetic, like the sea, is an undulation without any possible end." (Victor Hugo, "The Toilers of the Sea", 1866)

"[Arithmetic] is another of the great master-keys of life. With it the astronomer opens the depths of the heavens; the engineer, the gates of the mountains; the navigator, the pathways of the deep. The skillful arrangement, the rapid handling of figures, is a perfect magician’s wand." (Edward Everett, "Orations and Speeches", 1868)

"We do not listen with the best regard to the verses of a man who is only a poet, nor to his problems if he is only an algebraist; but if a man is at once acquainted with the geometric foundation of things and with their festal splendor, his poetry is exact and his arithmetic music." (Ralph W Emerson, "Society and Solitude", 1870)

On Arithmetic (1300 - 1699)

"Music submits itself to principles which it derives from arithmetic." (St. Thomas d'Aquin," Summa theologica", 1485)

"[...] if the worth of the arts were measured by the matter with which they deal, this art - which some call astronomy, others astrology, and many of the ancients the consummation of mathematics - would be by far the most outstanding. This art which is as it were the head of all the liberal arts and the one most worthy of a free man leans upon nearly all the other branches of mathematics. Arithmetic, geometry, optics, geodesy, mechanics, and whatever others, all offer themselves in its service." (Nicolaus Copernicus, "On the Revolutions of the Heavenly Spheres", 1543)

"The sciences are taught in following order: morality, arithmetic, accounts, agriculture, geometry, longimetry, astronomy, geomancy, economics, the art of government, physic, logic, natural philosophy, abstract mathematics, divinity, and history." (AbulFazl ibn Mubarak, "Ain-i-Akbery", cca.1590)

"It is true that not every geometric construction is elegant, for each particular problem has its own refinements. It is also true that [that construction] is preferred to any other that makes clear not the structure of a work from an equation but the equation from the structure; thus the structure demonstrates itself. So a skillful geometer, although thoroughly versed in analysis, conceals the fact and, while thinking about the accomplishment of his work, sheds light on and explains his problem Then, as an aid to the arithmeticians, he sets out and demonstrates his theorem with the equation or proportion he sees in it." (François Viète, "On the Meaning and Components of Analysis and on Matters Useful to Zetetics", 1591)

"Thus the analysis of angular sections involves geometric and arithmetic secrets which hitherto have been penetrated by no one." (François Viète, cca 1615)

"Mathematic is either Pure or Mixed: To Pure Mathematic belong those sciences which handle Quantity entirely severed from matter and from axioms of natural philosophy. These are two, Geometry and Arithmetic; the one handling quantity continued, the other dissevered. [...] Mixed Mathematic has for its subject some axioms and parts of natural philosophy, and considers quantity in so far as it assists to explain, demonstrate and actuate these." (Francis Bacon, "De Augmentis", 1623)

"And having thus passed the principles of arithmetic, geometry, astronomy, and geography, with a general compact of physics, they may descend in mathematics to the instrumental science of trigonometry, and from thence to fortification, architecture, engineering, or navigation. And in natural philosophy they may proceed leisurely from the history of meteors, minerals, plants, and living creatures, as far as anatomy. Then also in course might be read to them out of some not tedious writer the institution of physic. […] To set forward all these proceedings in nature and mathematics, what hinders but that they may procure, as oft as shall be needful, the helpful experiences of hunters, fowlers, fishermen, shepherds, gardeners, apothecaries; and in other sciences, architects, engineers, mariners, anatomists." (John Milton, "On Education", 1644)

"For, Mathematical Demonstrations being built upon the impregnable Foundations of Geometry and Arithmetick, are the only Truths, that can sink into the Mind of Man, void of all Uncertainty; and all other Discourses participate more or less of Truth, according as their Subjects are more or less capable of Mathematical Demonstration." (Christopher Wren, [lecture at Gresham College] 1657)

"Indeed, many geometric things can be discovered or elucidated by algebraic principles, and yet it does not follow that algebra is geometrical, or even that it is based on geometric principles (as some would seem to think). This close affinity of arithmetic and geometry comes about, rather, because geometry is, as it were, subordinate to arithmetic, and applies universal principles of arithmetic to its special objects." (John Wallis, "Mathesis Universalis", 1657)

"The method I take to do this is not yet very usual; for instead of using only comparative and superlative Words, and intellectual Arguments, I have taken the course (as a Specimen of the Political Arithmetic I have long aimed at) to express myself in Terms of Number, Weight, or Measure; to use only Arguments of Sense, and to consider only such Causes, as have visible Foundations in Nature." (William Petty, "Essays in Political Arithmetic", 1679) 

On Arithmetic (-1299)

"[Arithmetic] has a very great and elevating effect, compelling the soul to reason about abstract numbers, and rebelling against the introduction of visible or tangible objects into the argument." (Plato, "The Republic", cca. 375 BC)

"[...] arithmetic is a kind of knowledge in which the best natures should be trained, and which must not be given up." (Plato, "The Republic", cca. 375 BC)

"[...] the art of calculation (logistika) and arithmetic are both concerned with number; those who have a natural gift for calculating have, generally speaking, a talent for learning of all kinds, and even those who are slow are, by practice in it, made smarter. But the art of calculation is only preparatory to the true science; those who are to govern the city are to get a grasp of logistilca, not in the popular sense with a view to use in trade, but only for the purpose of knowledge, until they are able to con- template the nature of number in itself by thought alone." (Plato, "The Republic", cca. 375 BC)

"[...] those who have a natural talent for calculation are generally quick at every other kind of knowledge; and even the dull, if they have had an arithmetical training, although they may derive no other advantage from it, always become much quicker than they would otherwise have been [...]" (Plato, "The Republic", cca. 375 BC)

"Can we deny that a warrior should have a knowledge of arithmetic?" (Plato, "The Republic", cca. 375 BC)

"No single instrument of youthful education has such mighty power, both as regards domestic economy and politics, and in the arts, as the study of arithmetic. Above all, arithmetic stirs up him who is by nature sleepy and dull, and makes him quick to learn, retentive, shrewd, and aided by art divine he makes progress quite beyond his natural powers." (Plato, "Laws", cca. 360 BC)

"[...] if arithmetic, mensuration, and weighing be taken away from any art, that which remains will not be much." (Plato, "Philebus", cca. 360 - 347 BC)

"The Pythagoreans considered all mathematical science to be divided into four parts: one half they marked off as concerned with quantity, the other half with magnitude; and each of these they posited as twofold. A quantity can be considered in regard to its character by itself or in relation to another quantity, magnitudes as either stationary or in motion. Arithmetic, then, studies quantity as such, music the relations between quantities, geometry magnitude at rest, spherics magnitude inherently moving." (Diadochus Proclus, cca. 5th century)

"For, among the world's incertitudes, this thing called arithmetic is established by a sure reasoning that we comprehend as we do the heavenly bodies. It is an intelligible pattern, a beautiful system, that both binds the heavens and preserves the earth. For is there anything that lacks measure, or transcends weight? It includes all, it rules all, and all things have their beauty because they are perceived under its standard." (Cassiodorus,"Variae epistolae", cca. 538–540s)

"Mathematical science […] has these divisions: arithmetic, music, geometry, astronomy. Arithmetic is the discipline of absolute numerable quantity. Music is the discipline which treats of numbers in their relation to those things which are found in sound." (Cassiodorus, cca. 6th century)

On Arithmetic (1900 - 1924)

"All knowledge must be recognition, on pain of being mere delusion; Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians…. Whatever can be thought of has being and its [arithmetic] being is a precondition, not a result, of its being thought of." (Bertrand A W Russell, "Is Position in Space and Time Absolute or Relative", Mind Vol. X, 1901)

"Great numbers are not counted correctly to a unit, they are estimated; and we might perhaps point to this as a division between arithmetic and statistics, that whereas arithmetic attains exactness, statistics deals with estimates, sometimes very accurate, and very often sufficiently so for their purpose, but never mathematically exact." (Arthur L Bowley, "Elements of Statistics", 1901)

"I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetical act, that of counting, and counting itself as nothing else than the successive creation of the infinite series of positive integers in which each individual is defined by the one immediately preceding [...] (Richard Dedekind, "Essays on the Theory of Numbers", 1901)

"Symbolism is useful because it makes things difficult. Now in the beginning everything is self-evident, and it is hard to see whether one self-evident proposition follows from another or not. Obviousness is always the enemy to correctness. Hence we must invent a new and difficult symbolism in which nothing is obvious. [...] Thus the whole of Arithmetic and Algebra has been shown to require three indefinable notions and five indemonstrable propositions." Bertrand Russell, International Monthly, 1901)

"Arithmetical symbols are written diagrams and geometrical figures are graphic formulas." (David Hilbert, Bulletin of the American Mathematical Society Mathematical Problems Vol. 8, 1902)

"Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians." (Bertrand Russell, "The Principles of Mathematics", 1903)

"For we do not listen with the best regard to the verses of a man who is only a poet, nor to his problems if he is only an algebraist; but if a man is at once acquainted with the geometric foundations of things and with their festal splendor, his poetry is exact and his arithmetic musical." (Ralph Waldo Emerson, "Works and Days" [in "Society and solitude: Twelve chapters", 1903])

"We believe that in our reasonings we no longer appeal to intuition; the philosophers will tell us this is an illusion. Pure logic could never lead us to anything but tautologies; it could create nothing new; not from it alone can any science issue. In one sense these philosophers are right; to make arithmetic, as to make geometry, or to make any science, something else than pure logic is necessary. To designate this something else we have no word other than intuition. But how many different ideas are hidden under thi4s same word?" (Henri Poincaré , "Intuition and Logic in Mathematics", 1905)

"Arithmetic does not present to us that feeling of continuity which is such a precious guide; each whole number is separate from the next of its kind and has in a sense individuality; each in a manner is an exception and that is why general theorems are rare in the theory of numbers; and that is why those theorems which may exist are more hidden and longer escape those who are searching for them." (Henri Poincaré, "Annual Report of the Board of Regents of the Smithsonian Institution", 1909)

"The science of arithmetic may be called the science of exact limitation of matter and things in space, force, and time." (Francis W Parker, "Talks on Pedagogics: An outline of the theory of concentration", 1909)

"The student of arithmetic who has mastered the first four rules of his art, and successfully striven with money sums and fractions, finds himself confronted by an unbroken expanse of questions known as problems." (Stephen Leacock, "Literary Lapses", 1911)

"Geometry formerly was the chief borrower from arithmetic and algebra, but it has since repaid its obligation with abundant usury; and if I were asked to name, in one word, the pole-star round which the mathematical firmament revolves, the central idea which pervades as a hidden spirit the whole corpus of mathematical doctrine, I should point to Continuity as contained in our notions of space, and say, it is this, it is this!" (James J. Sylvester, Presidential Address to the British Association, [The Collected Mathematical Papers of James Joseph Sylvester Vol. 2, cca. 1904–1912])

"Time was when all the parts of the subject were dissevered, when algebra, geometry, and arithmetic either lived apart or kept up cold relations of acquaintance confined to occasional calls upon one another; but that is now at an end; they are drawn together and are constantly becoming more and more intimately related and connected by a thousand fresh ties, and we may confidently look forward to a time when they shall form but one body with one soul." (James J. Sylvester, Presidential Address to the British Association, [The Collected Mathematical Papers of James Joseph Sylvester Vol. 2, cca. 1904–1912])

"Arithmetic is the science of the Evaluation of Functions, Algebra is the science of the Transformation of Functions." (George H Howison, Journal of Speculative Philosophy Vol. 5, 1914)

"The way to enable a student to apprehend the instrumental value of arithmetic is not to lecture him on the benefit it will be to him in some remote and uncertain future, but to let him discover that success in something he is interested in doing depends on ability to use numbers." (John Dewey, "Democracy and Education: An Introduction to the Philosophy of Education", 1916)

11 June 2024

Statistical Tools V: Roulette

"As an instrument for selecting at random, I have found nothing superior to dice. It is most tedious to shuffle cards thoroughly be- tween each successive draw, and the method of mixing and stirring up marked balls in a bag is more tedious still. A teetotum or some form of roulette is preferable to these, but dice are better than all. When they are shaken and tossed in a basket, they hurtle so variously against one another and against the ribs of the basket-work that they tumble wildly about, and their positions at the outset afford no perceptible clue to what they will be after even a single good shake and toss." (Francis Galton, Nature vol. 42, 1890)

"In no subject is there a rule, compliance with which will lead to new knowledge or better understanding. Skillful observations, ingenious ideas, cunning tricks, daring suggestions, laborious calculations, all these may be required to advance a subject. Occasionally the conventional approach in a subject has to be studiously followed; on other occasions it has to be ruthlessly disregarded. Which of these methods, or in what order they should be employed is generally unpredictable. Analogies drawn from the history of science are frequently claimed to be a guide; but, as with forecasting the next game of roulette, the existence of the best analogy to the present is no guide whatever to the future. The most valuable lesson to be learnt from the history of scientific progress is how misleading and strangling such analogies have been, and how success has come to those who ignored them." (Thomas Gold, "Cosmology", 1956) 

“[In statistics] you have the fact that the concepts are not very clean. The idea of probability, of randomness, is not a clean mathematical idea. You cannot produce random numbers mathematically. They can only be produced by things like tossing dice or spinning a roulette wheel. With a formula, any formula, the number you get would be predictable and therefore not random. So as a statistician you have to rely on some conception of a world where things happen in some way at random, a conception which mathematicians don’t have.” (Lucien LeCam, [interview] 1988)

"Losing streaks and winning streaks occur frequently in games of chance, as they do in real life. Gamblers respond to these events in asymmetric fashion: they appeal to the law of averages to bring losing streaks to a speedy end. And they appeal to that same law of averages to suspend itself so that winning streaks will go on and on. The law of averages hears neither appeal. The last sequence of throws of the dice conveys absolutely no information about what the next throw will bring. Cards, coins, dice, and roulette wheels have no memory." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The dice and the roulette wheel, along with the stock market and the bond market, are natural laboratories for the study of risk because they lend themselves so readily to quantification; their language is the language of numbers." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

"The theory of probability can define the probabilities at the gaming casino or in a lottery - there is no need to spin the roulette wheel or count the lottery tickets to estimate the nature of the outcome - but in real life relevant information is essential. And the bother is that we never have all the information we would like. Nature has established patterns, but only for the most part. Theory, which abstracts from nature, is kinder: we either have the information we need or else we have no need for information." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996)

“Sequences of random numbers also inevitably display certain regularities. […] The trouble is, just as no real die, coin, or roulette wheel is ever likely to be perfectly fair, no numerical recipe produces truly random numbers. The mere existence of a formula suggests some sort of predictability or pattern.” (Ivars Peterson, “The Jungles of Randomness: A Mathematical Safari”, 1998)

"The chance events due to deterministic chaos, on the other hand, occur even within a closed system determined by immutable laws. Our most cherished examples of chance - dice, roulette, coin-tossing – seem closer to chaos than to the whims of outside events. So, in this revised sense, dice are a good metaphor for chance after all. It's just that we've refined our concept of randomness. Indeed, the deterministic but possibly chaotic stripes of phase space may be the true source of probability." (Ian Stewart, "Does God Play Dice: The New Mathematics of Chaos", 2002)

"People sometimes appeal to the ‘law of averages’ to justify their faith in the gambler’s fallacy. They may reason that, since all outcomes are equally likely, in the long run they will come out roughly equal in frequency. However, the next throw is very much in the short run and the coin, die or roulette wheel has no memory of what went before." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Another kind of error possibly related to the use of the representativeness heuristic is the gambler’s fallacy, otherwise known as the law of averages. If you are playing roulette and the last four spins of the wheel have led to the ball’s landing on black, you may think that the next ball is more likely than otherwise to land on red. This cannot be. The roulette wheel has no memory. The chance of black is just what it always is. The reason people tend to think otherwise may be that they expect the sequence of events to be representative of random sequences, and the typical random sequence at roulette does not have five blacks in a row." (Jonathan Baron, "Thinking and Deciding" 4th Ed, 2008)

"A very different - and very incorrect - argument is that successes must be balanced by failures (and failures by successes) so that things average out. Every coin flip that lands heads makes tails more likely. Every red at roulette makes black more likely. […] These beliefs are all incorrect. Good luck will certainly not continue indefinitely, but do not assume that good luck makes bad luck more likely, or vice versa." (Gary Smith, "Standard Deviations", 2014)

04 June 2024

Stephen M Stigler - Collected Quotes

"Beware of the problem of testing too many hypotheses; the more you torture the data, the more likely they are to confess, but confessions obtained under duress may not be admissible in the court of scientific opinion." (Stephen M Stigler, "Testing Hypotheses or fitting Models? Another Look at Mass Extinctions" [in "Neutral Models in Biology"], 1987)

"[…] good statistics requires a conversation between scientists and mathematical statisticians." (Stephen M Stigler, Statistics on the Table: the history of statistical concepts and methods, 1999) 

"[…] if statisticians are to be able to understand the limits and generality of their methodology, its worth in different circumstances and the means of adapting it to others, then it will need more than just mathematical statistics, but it will surely not need less. But neither should mathematical statisticians be complacent; above all it is the conversation between theory and applications that is crucially important." (Stephen M Stigler, Statistics on the Table: the history of statistical concepts and methods, 1999)

"No scientific discovery is named after its original discoverer." (Stephen M. Stigler, Statistics on the Table: the history of statistical concepts and methods, 1999) 

"The theory of errors held that a normal population distribution would be produced through the accumulation of a large number of small accidental deviations, and there seemed to be no other way to account for the ubiquitous appearance of that normal outline." (Stephen M. Stigler, Statistics on the Table: the history of statistical concepts and methods, 1999) 

"The recurrence of regression fallacies is testimony to its subtlety, deceptive simplicity, and, I speculate, to the wide use of the word regression to describe least squares fitting of curves, lines, and surfaces." (Stephen M Stigler, Statistics on the Table: the history of statistical concepts and methods, 1999) 

"The whole of the nineteenth- century theory of errors was keyed to this point: observation = truth + error. Without an objective truth, this sort of a split would be impossible, for where would error end and truth begin?" (Stephen M Stigler, Statistics on the Table: the history of statistical concepts and methods, 1999) 

"There was a fundamental difference between the application of statistical methods in astronomy, in experimental psychology, and in the social sciences, and this difference had a profound effect upon the spread of the methods and the pace of their adoption. Astronomy could exploit a theory exterior to the observations, a theory that defined an object for their inference. Truth was-or so they thought-well differentiated from error. Experimental psychologists could, through experimental design, create a baseline for measurement, and control the factors important for their investigation. For them the object of their inference-usually the difference between a treatment and a control group, or between two treatments-was created in the design of the experiment." (Stephen M Stigler, Statistics on the Table: the history of statistical concepts and methods, 1999)

02 June 2024

Francis Y Edgeworth - Collected Quotes

"[…] in the Law of Errors we are concerned only with the objective quantities about which mathematical reasoning is ordinarily exercised; whereas in the Method of Least Squares, as in the moral sciences, we are concerned with a psychical quantity - the greatest possible quantity of advantage." (Francis Y Edgeworth, "The method of least squares", 1883)

"It may be replied that the principles of greatest advantage and greatest proba￾bility do not coincide in .qeneral; that here, as in other depart￾ments of action~ when there is a discrepancy between the principle of utility and any other rul% the former should have precedence."  (Francis Y Edgeworth, "The method of least squares", 1883)

"The probable error, the mean error, the mean square of error, are forms divined to resemble in an essential feature the real object of which they are the imperfect symbols - the quantity of evil, the diminution of pleasure, incurred by error. The proper symbol, it is submitted, for the quantity of evil incurred by a simple error is not any power of the error, nor any definite function at all, but an almost arbitrary function, restricted only by the conditions that it should vanish when the independent variable, the error, vanishes, and continually increase with the increase of the error." (Francis Y Edgeworth, "The method of least squares", 1883)

"Our reasoning appears to become more accurate as our ignorance becomes more complete; that when we have embarked upon chaos we seem to drop down into a cosmos."  (Francis Y Edgeworth, "The Philosophy of Chance", Mind Vol. 9, 1884) 

"Probability may be described, agreeably to general usage, as importing partial incomplete belief." (Francis Y Edgeworth, "The Philosophy of Chance", Mind Vol. 9, 1884)

"Observations and statistics agree in being quantities grouped about a Mean; they differ, in that the Mean of observations is real, of statistics is fictitious. The mean of observations is a cause, as it were the source from which diverging errors emanate. The mean of statistics is a description, a representative quantity put for a whole group, the best representative of the group, that quantity which, if we must in practice put one quantity for many, minimizes the error unavoidably attending such practice. Thus measurements by the reduction of which we ascertain a real time, number, distance are observations. Returns of prices, exports and imports, legitimate and illegitimate marriages or births and so forth, the averages of which constitute the premises of practical reasoning, are statistics. In short, observations are different copies of one original; statistics are different originals affording one ‘generic portrait’. Different measurements of the same man are observations; but measurements of different men, grouped round l’homme moyen, are prima facie at least statistics." (Francis Y Edgeworth, 1885)

"What is required for the elimination of chance is not that the raw material of our observations should fulfill the law of error; but that they should be constant to any law." (Francis Y Edgeworth, 1885)

"The Calculus of Probabilities is an instrument which requires the living hand to direct it" (Francis Y Edgeworth, 1887)

"The swarm of probabilities flying hither and thither, does not settle down on any particular point" (Francis Y Edgeworth, 1887)

"However we define error, the idea of calculating its extent may appear paradoxical. A science of errors seems a contradiction in terms." (Francis Y Edgeworth, "The Element of Chance in Competitive Examinations", Journal of the Royal Statistical Society Vol. 53, 1890) 

"What real and permanent tendencies there are lie hid beneath the shifting superfices of chance, as it were a desert in which the inexperienced traveller mistakes the temporary agglomerations of drifting sand for the real configuration of the ground" (Francis Y Edgeworth, 1898)

"[...] the great objection to the geometric mean is its cumbrousness." (Francis Y Edgeworth, 1906)

On Least Squares Method

"From the foregoing we see that the two justifications each leave something to be desired. The first depends entirely on the hypothetical form of the probability of the error; as soon as that form is rejected, the values of the unknowns produced by the method of least squares are no more the most probable values than is the arithmetic mean in the simplest case mentioned above. The second justification leaves us entirely in the dark about what to do when the number of observations is not large. In this case the method of least squares no longer has the status of a law ordained by the probability calculus but has only the simplicity of the operations it entails to recommend it." (Carl Friedrich Gauss, "Anzeige: Theoria combinationis observationum erroribus minimis obnoxiae: Pars prior", Göttingische gelehrte Anzeigen, 1821)

"[…] in the Law of Errors we are concerned only with the objective quantities about which mathematical reasoning is ordinarily exercised; whereas in the Method of Least Squares, as in the moral sciences, we are concerned with a psychical quantity - the greatest possible quantity of advantage." (Francis Y Edgeworth, "The method of least squares", 1883) 

"The method of least squares is used in the analysis of data from planned experiments and also in the analysis of data from unplanned happenings. The word 'regression' is most often used to describe analysis of unplanned data. It is the tacit assumption that the requirements for the validity of least squares analysis are satisfied for unplanned data that produces a great deal of trouble." (George E P Box, "Use and Abuse of Regression", 1966)

"At the heart of probabilistic statistical analysis is the assumption that a set of data arises as a sample from a distribution in some class of probability distributions. The reasons for making distributional assumptions about data are several. First, if we can describe a set of data as a sample from a certain theoretical distribution, say a normal distribution (also called a Gaussian distribution), then we can achieve a valuable compactness of description for the data. For example, in the normal case, the data can be succinctly described by giving the mean and standard deviation and stating that the empirical (sample) distribution of the data is well approximated by the normal distribution. A second reason for distributional assumptions is that they can lead to useful statistical procedures. For example, the assumption that data are generated by normal probability distributions leads to the analysis of variance and least squares. Similarly, much of the theory and technology of reliability assumes samples from the exponential, Weibull, or gamma distribution. A third reason is that the assumptions allow us to characterize the sampling distribution of statistics computed during the analysis and thereby make inferences and probabilistic statements about unknown aspects of the underlying distribution. For example, assuming the data are a sample from a normal distribution allows us to use the t-distribution to form confidence intervals for the mean of the theoretical distribution. A fourth reason for distributional assumptions is that understanding the distribution of a set of data can sometimes shed light on the physical mechanisms involved in generating the data." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Least squares' means just what it says: you minimise the (suitably weighted) squared difference between a set of measurements and their predicted values. This is done by varying the parameters you want to estimate: the predicted values are adjusted so as to be close to the measurements; squaring the differences means that greater importance is placed on removing the large deviations." (Roger J Barlow, "Statistics: A guide to the use of statistical methods in the physical sciences", 1989)

"Principal components and principal factor analysis lack a well-developed theoretical framework like that of least squares regression. They consequently provide no systematic way to test hypotheses about the number of factors to retain, the size of factor loadings, or the correlations between factors, for example. Such tests are possible using a different approach, based on maximum-likelihood estimation." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Fuzzy models should make good predictions even when they are asked to predict on regions that were not excited during the construction of the model. The generalization capabilities can be controlled by an appropriate initialization of the consequences (prior knowledge) and the use of the recursive least squares to improve the prior choices. The prior knowledge can be obtained from the data." (Jairo Espinosa et al, "Fuzzy Logic, Identification and Predictive Control", 2005)

"Often when people relate essentially the same variable in two different groups, or at two different times, they see this same phenomenon - the tendency of the response variable to be closer to the mean than the predicted value. Unfortunately, people try to interpret this by thinking that the performance of those far from the mean is deteriorating, but it’s just a mathematical fact about the correlation. So, today we try to be less judgmental about this phenomenon and we call it regression to the mean. We managed to get rid of the term 'mediocrity', but the name regression stuck as a name for the whole least squares fitting procedure - and that’s where we get the term regression line." (Richard D De Veaux et al, "Stats: Data and Models", 2016)

Related Posts Plugin for WordPress, Blogger...

On Literature: On Metaphors (From Fiction to Science-Fiction)

"At the final stage you teach me that this wondrous and multicolored universe can be reduced to the atom and that the atom itself can b...